Technically, this delivers a lot of energy into the Earth, but it’s
spread out over a large enough area that it doesn’t do much more than
leave footprints in a lot of gardens. A slight pulse of pressure spreads
through the North American continental crust and dissipates with little
effect. The sound of all those feet hitting the ground creates a loud,
drawn-out roar which lasts many seconds.
Answer:
work done lifting the bucket (sand and rope) to the top of the building,
W=67.46 Nm
Explanation:
in this question we have given
mass of bucket=20kg
mass of rope=
height of building= 15 meter
We have to find the work done lifting the bucket (sand and rope) to the building =work done in lifting the rope + work done in lifting the sand
work done in lifting the rope is given as,
=
..............(1)
=
=22.5 Nm
work done in lifting the sand is given as,
.................(2)
Here,
F=mx+c
here,
c=20-18
c=2
m=
m=.133
Therefore,

Put value of F in equation 2


Therefore,
work done lifting the bucket (sand and rope) to the top of the building,
W=22.5 Nm+44.96 Nm
W=67.46 Nm
Answer:

Explanation:
The equation for work is:

We can substitute the given values into the equation:

You'd get an extra 40/60 of the energy, or 2/3. Multiply 5/3 by the required energy to get the actual consumption.