Location & Sunlight Availability.
Solar Panels use a large amount of space.
The Sun isn't always present.
Solar Energy is Inefficient.
There is an overlooked Pollution & Environmental Impact.
Expensive Energy Storage.
High Initial Cost.
Explanation:
⠀
⠀
(a) <u>The</u><u> </u><u>segment</u><u> </u>A shows acceleration as velocity increases with the increase in time.
⠀
⠀
⠀
(b) <u>The</u><u> </u><u>segment</u><u> </u>C shows the object is slowing down as the time increases in segment C, the velocity decreases and afterwards it comes to rest.
⠀
⠀
⠀
(c) The velocity is segment B is <u>4</u><u>0</u><u>m</u><u>/</u><u>s</u><u>.</u> And in the diagram there is no change in velocity.
⠀
⠀
⠀
(d) The acceleration of segment B is <u>zero</u><u>.</u> As there in no change in curve and it is moving with uniform velocity.
⠀
⠀
⠀

<h2>Thank you!</h2>
Answer:
13.309 m/s²
Explanation:
Length from shoulder to hand, l = 30 cm = 0.3 m
initial velocity, u = 1 m/s
final velocity, v = 2.5 m/s
time, t = 3 s
Let the tangential acceleration is a.
by using first equation of motion
v = u + at
2.5 = 1 + 3 a
a = 0.5 m/s²
Let the centripetal acceleration is a'.
a' = v'²/l
a' = 2 x 2 / 0.3
a' = 13.3 m/s²
The tangential acceleration and the centripetal acceleration are both perpendicular to each other. So, the net acceleration is given by


A = 13.309 m/s²
Answer:
Re = 1 10⁴
Explanation:
Reynolds number is
Re = ρ v D /μ
The units of each term are
ρ = [kg / m³]
v = [m / s]
D = [m]
μ = [Pa s]
The pressure
Pa = [N / m²] = [Kg m / s²] 1 / [m²] = [kg / m s²]
μ = [Pa s] = [kg / m s²] [s] = [kg / m s]
We substitute the units in the equation
Re = [kg / m³] [m / s] [m] / [kg / m s]
Re = [kg / m s] / [m s / kg]
RE = [ ]
Reynolds number is a scalar
Let's evaluate for the given point
Where the data for methane are:
viscosity μ = 11.2 10⁻⁶ Pa s
the density ρ = 0.656 kg / m³
D = 2 in (2.54 10⁻² m / 1 in) = 5.08 10⁻² m
Re = 0.656 4 2 5.08 10⁻² /11.2 10⁻⁶
Re = 1.19 10⁴
Answer:
d
Explanation:
there is not enough information about the liquid to know the force required for each. ie. stirring a cup of water is different than stirring a cup of pudding.