1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
2 years ago
9

The mass of the hammer is 0.454 kg. Calculate the weight of the hammer.

Physics
2 answers:
enyata [817]2 years ago
8 0

Answer:

4.45 n sorry if I am wrong

Taya2010 [7]2 years ago
4 0

Explanation:

weight =0.454 × 9.8=4.4492N

You might be interested in
A 1300 kg car starts at rest and rolls down a hill from a height of 10.0 m. It then moves across a
Makovka662 [10]

Answer:

0.51 m

Explanation:

Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.

Kinetic energy, KE=½kx²

Where k is spring constant and x is the compression of spring

Potential energy, PE=mgh

Where g is acceleration due to gravity, h is height and m is mass

Equating KE=PE

mgh=½kx²

Making x the subject of formula

x=\sqrt {\frac {2mgh}{k}}

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

x=\sqrt \frac {2*1300*9.81*10}{1000000}=0.50503465227646m\\x\approx 0.51 m

5 0
3 years ago
A fish swims 12.0 m in 5.0 s. It swims the first 4.0 m in 2.0 s, the next 3.0 m in 1.2 s, and the last 5.0 m in 1.8 s. What is t
xz_007 [3.2K]
Use the distance swan and the time elapsed in that interval.

Average velocity = distance / time

Average velocity = [4.0 m + 3.0m] / 3.2 s = 2.1875 m/s 
7 0
3 years ago
Read 2 more answers
Two point charges, a +45nC charge X and a +12nC charge Y are separated by a distance of 0.5m.
Gnoma [55]

A) Calculate the resultant electric field strength at the midpoint between the charges.

Qx is the charge at X and Qy is the charge at Y.

E at midpoint = k×Qx/0.25² - k×Qy/0.25²

k = 9×10⁹Nm²C⁻², Qx = 45nC, Qy = 12nC

E = 4752N/C

Well done.

B) Calculate the distance from X at which the electric field strength is zero.

Let D be some point between X and Y for which the net E field is 0.

Let d be the distance from X to D.

Set up the following equation:

E at D = k×Qx/d² - k×Qy/(0.5-d)² = 0

Do some algebra to solve for d:

k×Qx/d² = k×Qy/(0.5-d)²

Qx/d² = Qy/(0.5-d)²

Qx(0.5-d)² = Qyd²

(0.5-d)√Qx = d√Qy

0.5√Qx-d√Qx = d√Qy

d(√Qx+√Qy) = 0.5√Qx

d = (0.5√Qx)/(√Qx+√Qy)

Plug in Qx = 45nC, Qy = 12nC

d ≈ 330mm

C) Calculate the magnitude of the electric field strength at the point P on the diagram below.

First determine the angles of the triangle. The sides of the triangle are 0.3m, 0.4m, and 0.5m, so this is a right triangle where the angle between the 0.3m and 0.4m sides is 90°

∠Y = tan⁻¹(0.4/0.3) = 53.13°

∠X = 90-∠Y = 36.87°

Determine the horizontal component of E at P:

Ex = E from Qx × cos(∠X) - E from Qy × cos(∠Y)

Ex = k×Qx/0.4²×cos(36.87°) - k×Qy/0.3²×cos(53.13°)

Ex = 1305N/C

Determine the vertical component of E at P:

Ey = E from Qx × sin(∠X) - E from Qy × sin(∠Y)

Ey = k×Qx/0.4²×sin(36.87°) - k×Qy/0.3²×sin(53.13°)

Ey = 2479N/C

Use the Pythagorean theorem to determine the magnitude of E at P:

E = √(Ex²+Ey²)

E ≈ 2802N/C

4 0
3 years ago
Please help me with the equations for this! Three uniform spheres are fixed at the positions shown in the diagram. ( there is a
lora16 [44]
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!

<span>PE=−[G<span>M1</span><span>M2</span>]÷R

</span><span> Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>
7 0
3 years ago
A block of ice at 0 degrees C, whose mass is initially 62 kg, slides along a horizontal surface, starting at a speed of 5.48 m/s
Kryger [21]

The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g

<u>Explanation:</u>

Given,

Temperature, T = 0°C

Initial mass, Mi = 62kg

Speed, s = 5.48m/s

Distance, x = 26.8m

Friction is present.

Mass of ice melted = ?

We know,

The amount of energy required for the melting of ice is exactly equal to the initial kinetic energy of the block of ice

and

            Kinetic Energy, KE = \frac{1}{2} mv^2

Therefore,    KE = \frac{62 X  5.48 X 5.48}{2}

KE = 930.94 Joules

Ice melting lateral heat is  334 kJ/kg = 334000 J/kg.

Therefore, the melted mass of the ice = 930.94 / 334000 = 0.00278 kg = 2.78 g.

Thus, The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g

4 0
3 years ago
Other questions:
  • How many significant figures from 0,020170 kg ?<br> a. 3<br> b. 4<br> c. 5<br> d. 6<br> e. 7
    5·1 answer
  • How many times bigger is the earth than the moon?
    5·1 answer
  • Which transformation of energy occurs in a hydroelectric power plant? A. Potential to chemical energy B. Chemical to potential e
    10·2 answers
  • How much thermal energy is Generated?
    9·2 answers
  • What kind of charge does an object have when it has given away electrons?
    9·2 answers
  • What’s the velocity of a ball falling with 100 joules of kinetic energy and a mass of 2 kilograms?
    9·2 answers
  • The rock falls from the distance of 15 m before it hits the water. Calculate its kinetic energy just before hitting the water. S
    7·2 answers
  • A football player kicks a ball with an initial velocity of 25 m/s at an angle of 53 degrees above the horizontal. The vertical c
    13·1 answer
  • A boat travels at 17mi/h for 1.50h. How far does the boat travel?
    9·1 answer
  • Which of the following mathematical operations are and are not not allowed on two quantities with different unit dimensions?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!