Answer:
Star A is brighter than Star B by a factor of 2754.22
Explanation:
Lets assume,
the magnitude of star A = m₁ = 1
the magnitude of star B = m₂ = 9.6
the apparent brightness of star A and star B are b₁ and b₂ respectively
Then, relation between the difference of magnitudes and apparent brightness of two stars are related as give below: 
The current magnitude scale followed was formalized by Sir Norman Pogson in 1856. On this scale a magnitude 1 star is 2.512 times brighter than magnitude 2 star. A magnitude 2 star is 2.512 time brighter than a magnitude 3 star. That means a magnitude 1 star is (2.512x2.512) brighter than magnitude 3 bright star.
We need to find the factor by which star A is brighter than star B. Using the equation given above,



Thus,

It means star A is 2754.22 time brighter than Star B.
Answer:
An electric bell is placed inside a transparent glass jar. The bell can be turned on and off using a switch on the outside of the jar. A vacuum is created inside the jar by sucking out the air. Then the bell is rung using the switch. What will we see and hear?
A.
We’ll see the bell move, but we won’t hear it ring.
B.
We won’t see the bell move, but we’ll hear it ring.
C.
We’ll see the bell move and hear it ring.
D.
We won’t see the bell move or hear it ring.
E.
We’ll see the sound waves exit the vacuum pump.
Explanation:
so, the answer to the question is
A.
We'll see the bell move, but we won’t hear it ring.
Answer:
Yes, yes it would since we need light
Explanation:
Answer:
In fission, energy is gained by splitting apart heavy atoms, for example uranium, into smaller atoms such as iodine, caesium, strontium, xenon and barium, to name just a few. However, fusion is combining light atoms, for example two hydrogen isotopes, deuterium and tritium, to form the heavier helium.
Explanation:
I hope this helped you
(Sorry If it didn't)