Explanation:
It is given that,
Mass of the ball, m = 0.06 kg
Initial speed of the ball, u = 50.4 m/s
Final speed of the ball, v = -37 m/s (As it returns)
(a) Let J is the magnitude of the impulse delivered to the ball by the racket. It can be calculated as the change in momentum as :

J = -5.24 kg-m/s
(b) Let W is the work done by the racket on the ball. It can be calculated as the change in kinetic energy of the object.


W = -35.1348 Joules
Hence, this is the required solution.
Explanation:
20 joule is your answer
Answer:
here
mass m =100kg
distance d=50m
acceleration due to gravity a =10m/s²
work =force×displacement
= ma/d=100×10/50=20joule
Answer:
15.8 seconds
Explanation:
Create an extended calculation to convert all the unit to what you need.
160 km 1000 m 1 hour 1 min
----------- x ------------- x -------------- x ---------- = 44.4 m/s
1 hour 1 km 60 min 60 sec
So 160km/hr is equal to 44.4m/s
Now you can figure out how many seconds it will take to go 700 meters.
44.4 m
---------- X x sec = 700 m
1 sec
Solve for x sec
x sec = 700m / 44.4 m/s
= 15.8 seconds
Answer:
more than
Explanation:
In a nuclear fusion reaction, the mass of the products is more than the mass of the reactants.