The representation of this problem is shown in Figure 1. So our goal is to find the vector
. From the figure we know that:
From geometry, we know that:
Then using
vector decomposition into components:
Therefore:
So if you want to find out <span>
how far are you from your starting point you need to know the magnitude of the vector
, that is:
</span>
Finally, let's find the <span>
compass direction of a line connecting your starting point to your final position. What we are looking for here is an angle that is shown in Figure 2 which is an angle defined with respect to the positive x-axis. Therefore:
</span>
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
The value is or 21.45%
Explanation:
From the question we are told that
The first reservoir is at steam point
The second reservoir is at room temperature
Generally the maximum theoretical efficiency of a Carnot engine is mathematically evaluated as
=>
=>
The answer is false because there are single celled organisms.