Answer:
The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Explanation:
Given that,
Mass flow rate = 2 kg/s
Diameter of inlet pipe = 5.2 cm
Fifteen percent of the flow leaves through location (2) and the remainder leaves at (3)
The mass flow rate is

We need to calculate the mass flow rate at reach exit
Using formula of mass



We need to calculate the inlet velocity
Using formula of velocity

Put the value into the formula


Hence, The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Answer: The distance between particles, and the amount of electric charge they carry.
Explanation:
Charles Coulomb wanted to figure out the strength of the force between two objects and these were the two most independent factors.
Answer:
- 210 rad/s²
Explanation:
n = frequency of rotation = 3400/60 = 170/3 per sec.
angular velocity ω ( 0 ) at time 0 = 2π n = 2π x 170/3
angular velocity at time t = ω(t) = 0
now, ω²( t) = w²(o) + 2α Φ ( α = angular acceleration and Φ = angular displacement) = 2π x 48 rad.
0 = ( 2π x 170/3 )² + 2α x 48 x 2π
α = - (2π x 170 x 170 )/ (3 x 3 x 2 x 48 ) = 210 rad / s²
Answer: 1.57
Explanation:
This described situation is known as Refraction, a phenomenon in which light bends or changes its direction when passing through a medium with a index of refraction different from the other medium.
In this context, the index of refraction is a number that describes how fast light propagates through a medium or material.
According to Snell’s Law:
(1)
Where:
is the first medium index of refraction (the value we want to know)
is the second medium index of refraction (air)
is the angle of incidence
is the angle of refraction
Now, let's find
from (1):
(2)
Substituting the known values:
Finally:
Explanation:
Derived quantities are quantities dependent on fundamental quantities while derived units are the units of these quantities