Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (, , , )
(2)
Free fall (, , , )
(3)
Now we created the graph speed-time, which can be seen below.
Answer: The pressure that one experiences on the Mount Everest will be different from the one, in a classroom. It is because pressure and height are inversely proportional to each other. This means that as we move up, the height keeps on increasing but the pressure will keep on decreasing. This is the case that will be observed when one stands on the Mount Everest as the pressure is comparatively much lower there.
It is because as we move up, the amount of air molecules keeps on decreasing but all of the air molecules are concentrated on the lower part of the atmosphere or on the earth's surface.
Thus a person in a low altitude inside a classroom will experience high pressure and a person standing on the Mount Everest will experience low pressure.
Answer: el tiempo que habria que esperar para que el dia fuera 1 hora mas largo que es hoy
Explanation:
Answer:
Explanation:
Heat capacity A = 3 x heat capacity of B
initial temperature of A = 2 x initial temperature of B
TA = 2 TB
Let T be the final temperature of the system
Heat lost by A is equal to the heat gained by B
mass of A x specific heat of A x (TA - T) = mass of B x specific heat of B x ( T - TB)
heat capacity of A x ( TA - T) = heat capacity of B x ( T - TB)
3 x heat capacity of B x ( TA - T) = heat capacity of B x ( T - TB)
3 TA - 3 T = T - TB
6 TB + TB = 4 T
T = 1.75 TB