Answer:
Explanation:
a )
Reaction force of the ground
R = mg
= 160 N
Maximum friction force possible
= μ x R
= μ x 160
= .4 x 160
= 64 N .
b )
160 N will act at middle point . 740N will act at distance of 3 / 5 m from the wall ,
Taking moment about top point of ladder
160 x 1.5 + 740 x 3/5 + f x 4 = 900 x 3
240 + 444 + 4f = 2700
f = 504 N
c )
Let x be the required distance.
Taking moment about top point of ladder
160 x 1.5 + 740 x 3 x / 5 + .4 x 900 x 4 = 900 x 3 ( .4 x 900 is the maximum friction possible )
240 + 444 x + 1440 = 2700
x = 2.3 m
so man can go upto 2.3 at which maximum friction acts .
A fan may be used to model an atom because the fan blades form something similar to a electron cloud. But there is really nothing to model the neutrons and protons. Also the fan is flat like where an atom is more 3-D sphere-like.
hope this helps
Ur welcome
have a great day (:
The force applied to the lever is 400 N, because the force applied by the lever (800 N) divided by the mechanical advantage of the lever (4) equals
400 N.
(800/4) = 200
Answer:
C) less than 129 lb.
Explanation:
Let the elevator be slowing up with magnitude of a . That means it is accelerating downwards with magnitude a .
If R be the reaction force
For the elevator is going downwards with acceleration a
mg - R = ma
R = mg - ma
R measures its apparent weight . Spring scale will measure his apparent weight.
So its apparent weight is less than 129 lb .
Friction is directly related to air particles.
When we say that friction is high, it means that you're colliding with lots of air particles, and hence you can't speed up as easily.
Thus, the more air particles you encounter, the higher the friction.
The faster you go, the more particles you will encounter in a given time; hence at higher speeds, the friction is higher.