1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
3 years ago
6

The depth of the Pacific Ocean in the Mariana Trench is 36,198 ft. What is the gauge pressure at this depth

Physics
1 answer:
FinnZ [79.3K]3 years ago
4 0

Answer:

the pressure at the depth is 1.08 × 10^{8} Pa

Explanation:

The pressure at the depth is given by,

P = h \rho g

Where, P = pressure at the depth

h = depth of the Pacific Ocean in the Mariana Trench = 36,198 ft = 11033.15 meter

\rho = density of water = 1000 \frac{kg}{m^{3} }

g = acceleration due to gravity ≈ 9.8 \frac{m}{s^{2} }

P = 11033.15 × 9.8 × 1000

P = 1.08 × 10^{8} Pa

Thus, the pressure at the depth is 1.08 × 10^{8} Pa

You might be interested in
A small car with mass of 0.800 kg travels at a constant speed
Alexandra [31]

Answer:

The equation of equilibrium at the top of the vertical circle is:

\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}

The speed experimented by the car is:

\frac{N}{m}+g=\frac{v^{2}}{R}

v = \sqrt{R\cdot (\frac{N}{m}+g) }

v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}

v\approx 9.302\,\frac{m}{s}

The equation of equilibrium at the bottom of the vertical circle is:

\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}

The normal force on the car when it is at the bottom of the track is:

N=m\cdot (\frac{v^{2}}{R}+g )

N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)

N=21.690\,N

7 0
2 years ago
At a certain time a particle had a speed of 48 m/s in the positive x direction, and 4.5 s later its speed was 92 m/s in the oppo
larisa86 [58]

Answer:

-31.1 m/s^2

Explanation:

The acceleration of an object is the rate of change of velocity of the object.

Mathematically, it is calculated as:

a=\frac{v-u}{t}

where

u is the initial velocity

v is the final velocity

t is the time taken for the velocity to change from u to v

Acceleration is a vector, so it is important to also take into account the direction of the velocity.

For the particle in this problem, we have:

u = +48 m/s is the initial velocity (positive direction)

v = -92 m/s is the final velocity (negative direction)

t = 4.5 s is the time interval

Therefore, the average acceleration is

a=\frac{v-u}{t}=\frac{-92-(+48)}{4.5}=-31.1 m/s^2

4 0
3 years ago
Which action involves the most efficient conversion of electrical energy into thermal energy?
azamat

Answer:

the answer is option d

because in oven which works through electricity ,it will bake the cake (heat energy is produced)

7 0
3 years ago
The voltage across the terminals of a 250nF capacitor is푣푣=�50푉푉, 푡푡≤0(푚푚1푒푒−4000푡푡+푚푚2푡푡푒푒−4000푡푡)푉푉, 푡푡 ≥0The initial current
olga2289 [7]

The first part of the question is not complete and it is;

The voltage across the terminals of a 250 nF capacitor is 50 V, A1e^(-4000t) + (A2)te^(-4000t) V, t0, What is the initial energy stored in the capacitor? Express your answer to three significant figures and include the appropriate units. t

Answer:

A) initial energy = 0.3125 mJ

B) A1 = 50 and A2 = 1,800,000

C) Capacitor Current is given by the expression;

I = e^(-4000t)[0.95 - 1800t]

Explanation:

A) In capacitors, Energy stored is given as;

U = (1/2)Cv²

Where C is capacitance and v is voltage.

So initial kinetic energy;

U(0) = (1/2)C(vo)²

From the question, C = 250 nF and v = 50V

So, U(0) = (1/2)(250 x 10^(-9))(50²) = 0.3125 x 10^(-3)J = 0.3125 mJ

B) from the question, we know that;

A1e^(-4000t) + (A2)te^(-4000t)

So, v(0) = A1e^(0) + A2(0)e^(0)

v(0) = 50

Thus;

50 = A1

Now for A2; let's differentiate the equation A1e^(-4000t) + (A2)te^(-4000t) ;

And so;

dv/dt = -4000A1e^(-4000t) + A2[e^(-4000t) - 4000e^(-4000t)

Simplifying this, we obtain;

dv/dt = e^(-4000t)[-4000A1 + A2 - 4000A2]

Current (I) = C(dv/dt)

I = (250 x 10^(-9))e^(-4000t)[-4000A1 + A2 - 4000tA2]

Thus, Initial current (Io) is;

Io = (250 x 10^(-9))[e^(0)[-4000A1 + A2]]

We know that Io = 400mA from the question or 0.4 A

Thus;

0.4 = (250 x 10^(-9))[-4000A1 + A2]

0.4 = 0.001A1 - (250 x 10^(-9)A2)

Substituting the value of A1 = 50V;

0.4 = 0.001(50) - (250 x 10^(-9)A2)

0.4 = 0.05 - (250 x 10^(-9)A2)

Thus, making A2 the subject, we obtain;

(0.4 + 0.05)/(250 x 10^(-9))= A2

A2 = 1,800,000

C) We have derived that ;

I = (250 x 10^(-9))e^(-4000t)[-4000A1 + A2 - 4000tA2]

So putting values of A1 = 50 and A2 = 1,800,000 we obtain;

I = (250 x 10^(-9))e^(-4000t)[(-4000 x 50) + 1,800,000 - 4000(1,800,000)t]

I = e^(-4000t)[0.05 + 0.45 - 1800t]

I = e^(-4000t)[0.95 - 1800t]

5 0
3 years ago
You can increase the capacitance of a capacitor by A. Decreasing the plate spacing B. Increasing the plate spacing. ° C. Decreas
eimsori [14]

You can increase the capacitance of a capacitor by decreasing the plate spacing (A) or by increasing the area of the plates (D).

'A' and 'D' both do the job, so the correct choice is<em> (E)</em> .

4 0
3 years ago
Other questions:
  • Carter pushes a bag full of basketball jerseys across the gym floor. The he pushes with a constant force of 21 newtons. If he pu
    8·2 answers
  • How many electrons are in the outer energy level of group 17(7A) atoms?
    15·1 answer
  • Ingrid kicks a football with an initial velocity at 12 m/s at an angle of 45 relative to the ground
    14·1 answer
  • How can you observe the law of conservation of energy in action at the skatepark?
    9·1 answer
  • a coin press creates a pressure of 3.20*10^8 Pa on a nickel of radius 0.0106 m. how much force does the press exert on the coin?
    14·1 answer
  • Are the two displacements equal? Explain your answer.
    8·2 answers
  • A police car travels towards a stationary observer at a speed of 15m/s. the siren on the car emits a sound of frequency 250Hz. C
    9·1 answer
  • Which option tells the forces that influence the movement of earths plates
    14·1 answer
  • Sally and Susie are astronauts. They went outside the space station to fix something.
    6·1 answer
  • a girl standing on her heel exert more pressure on the ground than an elephant standing flat on its feet. Give reasons​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!