Answer:
Explanation:
The magnetic force acting horizontally will deflect the wire by angle φ from the vertical
Let T be the tension
T cosφ = mg
Tsinφ = Magnetic force
Tsinφ = BiL , where B is magnetic field , i is current and L is length of wire
Dividing
Tanφ = BiL / mg
= .055 x 29 x .11 / .010 x 9.8
= 1.79
φ = 61° .
Tension T = mg / cosφ
= .01 x 9.8 / cos61
= .2 N .
Answer:
a)Velocity of car =v=16 m/s
b)Force against the track at point B=1.15*
N
Explanation:
Given mass of roller coaster=m=350 kg
Position of A=Ha=25 m
Position of B=Hb=12 m
Net potential energy=mg(ha-hb)
Net potential energy=(350)(9.80)(25-12)
Net potential energy=44590 J
Using energy conservation
net kinetic energy=net potential energy
(1/2)mv^2=mg(ha-hb)
m=350
velocity=v=16 m/s
b)There two force acting,centripetal force upward and gravity downward.
Thus net force acting will be
Net force=(mv^2/r)-mg
Net force=14933.33-3430
Net force=1.15*
N
The correct answer would be odor. Because it's sweet. Boiling shape and hardness have nothing to do with sweet and floral :)
Answer:
The current in the rods is 171.26 A.
Explanation:
Given that,
Length of rod = 0.85 m
Mass of rod = 0.073 kg
Distance 
The rods carry the same current in the same direction.
We need to calculate the current
I is the current through each of the wires then the force per unit length on each of them is
Using formula of force


Where, m = mass of rod
l = length of rod
Put the value into the formula




Hence, The current in the rods is 171.26 A.
Potential Energy = mgh,
where m = mass in kg, g ≈ 10 m/s², h = height above ground = 8 m
PE = mgh
= 70*10*8 = 5600 J