Before we go through the questions, we need to calculate and determine some values first.
r = 11.5 m
<span>m = 280 kg </span>
<span>Centripetal force = m x v^2/r = 280 x (17.1^2/11.5) = 7119.55 N
</span>
1) What is the magnitude of the normal force on the care when it is at the bottom of the circle.
<span>Centripetal force + mg = 7119.55 + (280 x 9.8) = 9863.55 N </span>
<span>2) What is the magnitude of the normal force on the car when it is at the side of the circle. </span>
<span>Centripetal force = 7119.55 N </span>
<span>3) What is the magnitude of the normal force on the car when it is at the top of the circle. </span>
<span>Centripetal force - mg = 7119.55 - (280 x 9.8) = 4375.55 N </span>
<span>4) What is the minimum speed of the car so that it stays in contact with the track at the top of the loop. </span>
√<span>(gr) </span>
√<span>(9.8 x 11.5) = 10.62 m/s</span>
Dubai this part of india has a lot of oil is consider one that has more oil wells.
Answer:
a) 
b) 
Explanation:
Given:
height of water in one arm of the u-tube, 
a)
Gauge pressure at the water-mercury interface,:

we've the density of the water 


b)
Now the same pressure is balanced by the mercury column in the other arm of the tube:



<u>Now the difference in the column is :</u>



It does take on new set of proerties
Adaptations can help organisms reproduce and continue living in different conditions