Explanation:
B.
dfgfafbbgsysyayaygwwusduhxh
duduusuwubbdysysdhvvduususu
Explanation:
In a vacuum (no air resistance), it doesn't. All falling objects, regardless of mass, accelerate at the same rate.
However, when air resistance is taken into account, heavier objects indeed fall faster than lighter objects, provided they have the same shape and size. For example, a lead ball falls faster than a styrofoam ball.
To understand why, first look at what factors affect air resistance:
D = ½ρv²CA
where ρ is air density,
v is velocity,
C is drag coefficient,
and A is cross sectional area.
As falling objects accelerate, they eventually reach a maximum velocity where air resistance equals weight. This is called terminal velocity.
D = W
½ρv²CA = mg
v = √(2mg/(ρCA))
If we increase m while holding everything else constant, v increases. So two objects with the same size and shape but different masses will have different terminal velocities, with the heavier object falling faster.
Answer:
Image is between F and 2F. And the exact location is:
q = 10.84 cm
Explanation:
The convex lens form different kinds of images with different sizes and locations, for the different positions of an object. In this case, the object is placed 30.5 cm from the convex lens with a focal length of 8 cm. This means that it is the case of the object placed beyond 2F. In this case, the image formed has the following characteristics:
1. Image is real.
2. Image is inverted
3. Image is diminished
<u>4. Image is located between F and 2F</u>
For exact location we use the thin lens formula:

where,
f = focal length = 8 cm
p = object distance = 30.5 cm
q = image distance = ?
Therefore,

<u>q = 10.84 cm</u>