Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:

I'm quite certain the answer is "stress".
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease