Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
the earth moves throughout the year such as rotate around the sun, so yes the it does move and it sits roughly at 93.048 million miles away from the sun. I hope this helps you out! :)
Force required is 100 N
<u>Given that;</u>
Rate of acceleration = 5 m/s²
Mass of object = 20kg
<u>Find:</u>
Force required
<u>Computation:</u>
Force = Mass × Acceleration
Force required = Rate of acceleration × Mass of object
Force required = 20 × 5
Force required = 100 N
Learn more:
brainly.com/question/17506203?referrer=searchResults