Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

Answer: Things continue doing what they are doing unless a force is applied to it. Objects have a natural tendency to resist change. This is INERTIA. Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects, so true
Explanation:
Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop. The Cadillac has more of a tendency to stay stationary (or continue moving), and resist a change in motion than a bicycle.
Answer:
F=12.5N
Explanation:
Net force = rate of change of momentum

so find the change of momentum P
Pdown

Pup

dP = change in P

so