Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s

Hi Pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
An object moving with constant speed can be accelerated if direction of motion changes. For example, an object moving with a constant speed in a circular path has an acceleration because its direction of motion changes continuously.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this Helps . . . . . . . . .
Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
= 

= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.
The answer would be 981 newtons or 220.46 pounds.