Answer:
9.875
Explanation:
w=f×s
395=40×s
make s the subject of the formula
s=395/40
=9.875
Explanation:
Large electrical shifting magnets have concentrated retaining strength to lift dense, ferric objects and a deep-reaching magnetization. An immensely useful materials management technique is these electromagnetic rises.
We can salve the problem by using the formula:

where F is the force applied, k is the spring constant and x is the stretching of the spring.
From the first situation we can calculate the spring constant, which is given by the ratio between the force applied and the stretching of the spring:

By using the value of the spring constant we calculated in the first step, we can calculate the new stretching of the spring when a force of 33 N is applied:

Answer:
The number of turns in the solenoid is 22366.
Explanation:
The number of turns in the solenoid can be found using the following equation:

Where:
B: is the magnetic field = 8.90 T
L: is the solenoid's length = 0.300 m
N: is the number of turns =?
I: is the current = 95 A
μ₀: is the magnetic constant = 4π×10⁻⁷ H/m
By solving equation (1) for N we have:

Therefore, the number of turns in the solenoid is 22366.
I hope it helps you!
Missing questions: "find the speed of the electron".
Solution:
the magnetic force experienced by a charged particle in a magnetic field is given by

where
q is the particle charge
v its velocity
B the magnitude of the magnetic field

the angle between the directions of v and B.
Re-arranging the formula, we find:

and by substituting the data of the problem (the charge of the electron is

), we find the velocity of the electron: