Answer: the external agent must do work equal to -1.3 × 10⁻⁸ J
Explanation:
Given that;
Mass M1 = 7.0 kg
r = 3.0/2 m = 1.5 m
Mass M2 = 21 kg
we know that G = 6.67 × 10⁻¹¹ N.m²/kg²
work done by an external agent W = -2GM2M1 / r
so we substitute
W = (-2 × 6.67 × 10⁻¹¹ × 21 × 7) / 1.5
W = -1.96098 × 10⁻⁸ / 1.5
W = -1.3 × 10⁻⁸ J
Therefore the external agent must do work equal to -1.3 × 10⁻⁸ J
Wouldn't it be the employee? Because the employee has to adjust to the needs of his/her supervisor. If the supervisor wants 100 boxes the employee has to make those 100 boxes and so on and so forth.
Answer:
18.2145 meters
Explanation:
Using the conservation of momentum, we have that:

m1 = m1' is the mass of the astronaut, m2=m2' is the mass of the satellite, v1 and v2 are the inicial speed of the astronaut and the satellite (v1 = v2 = 0), and v1' and v2' are the final speed of the astronaut and the satellite. Then we have that:


The negative sign of this speed just indicates the direction the astronaut goes, which is the opposite direction of the satellite.
If the astronaut takes 7.5 seconds to come into contact with the shuttle, their initial distance is:
