<span>One everyday life experience that seems to support the geocentric model is the rising and setting of the Sun and Moon. The Moon rises and falls because it does revolve around the Earth and so it is easy to assume the same is true for the Sun.</span>
Answer:

Explanation:
Where E is the magnitude of electric field...
k is called Columb's Constant. It has a value of 8.99 x 109 N m2/C2.
Qs is the magnitude of the source charge...
and r is the magnitude of distance between source and target...
(When electron comes to rest Δt the magnitude of Electric field E become zero momentarily but later achieves the maximum value...)
The two main variables in an experiment are the independent and dependent variable. An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. A dependent variable is the variable being tested and measured in a scientific
Answer:
option (a)
Explanation:
the angular velocity of the carousel is same througout the motion, so the angular velocity of all the horses is same, but the linear velocity is different for different horses.
As the angular displacement of all the horses are same in the same time so the angular velocity is same.
The relation between the linear velocity and the angular velocity is given by
v = r ω
where, v is linear velocity and r be the distance between the horse and axis of rotation and ω be the angular velocity.
So, the angular velocity of Alice horse is same as the angular velocity of Bob horse.
ωA = ωB
Thus, option (a) is true.
In order to solve this problem, there are two equations that you need to know to solve this problem and pretty much all of kinematics. The first is that d=0.5at^2 (d=vertical distance, a=acceleration due to gravity and t=time). The second is vf-vi=at (vf=final velocity, vi=initial velocity, a=acceleration due to gravity, t=time). So to find the time that the ball traveled, isolate the t-variable from the d=0.5at^2. Isolate the t and the equation now becomes

. Solving the equation where d=8 and a=9.8 makes the time

=1.355 seconds. With the second equation, the vi=0 m/s, the vf is unknown, a=9.8 m/s^2 and t=1.355 sec. Substitute all these values into the equation vf-vi=at, this makes it vf-0=9.8(1.355). This means that the vf=13.28 m/s.