Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
Boiling point
i hope this helps.
Talk to them back don't be scared
crop rotation, green manure, and bone meal
Explanation:
I just looked it up. hope it helps
Answer:
See explanation
Explanation:
Extraction has to do with the separation of the components of a mixture by dissolving the mixture in a set up involving two phases. One phase is the aqueous phase (beneath) while the other is the organic phase (on top). The solvents used for the two phases must not be miscible. Water commonly is used for the aqueous phase.
Ethanol is an important solvent in chemistry but the solvent is miscible with water in all proportions. As a result of this, ethanol is a poor solvent for carrying out extraction.