Answer:
0.025M
Explanation:
As you must see in your graph, each concentration of the experiment has an absorbance. Following the Beer-Lambert's law that states "The absorbance of a solution is directely proportional to its concentration".
At 0.35 of absorbance, the plot has a concentration of:
<h3>0.025M</h3>
<span>
some elements have their outer electrons more tightly bound than
others. Those who have less tightly bound electrons are more reactive.
After this it gets more complex in explaining why they are bound with
different strengths. </span>
In biological terms a cells main purpose is to survive but some important functions of cells are 1. Transports ( of molecules) 2. Chemical Reactions ( I.e Metabolism ) including energy conversion 3. reproduction hope this helps!
Calcium = 1
Sulfur = 1
Oxygen = 4
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.