Answer:
the time taken for the radioactive element to decay to 1 g is 304.8 s.
Step-by-step explanation:
Given;
half-life of the given Dubnium = 34 s
initial mass of the given Dubnium, m₀ = 500 grams
final mass of the element, mf = 1 g
The time taken for the radioactive element to decay to its final mass is calculated as follows;
![1 = 500 (0.5)^{\frac{t}{34}} \\\\\frac{1}{500} = (0.5)^{\frac{t}{34}}\\\\log(\frac{1}{500}) = log [(0.5)^{\frac{t}{34}}]\\\\log(\frac{1}{500}) = \frac{t}{34} log(0.5)\\\\-2.699 = \frac{t}{34} (-0.301)\\\\t = \frac{2.699 \times 34}{0.301} \\\\t = 304.8 \ s](https://tex.z-dn.net/?f=1%20%3D%20500%20%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%20%5C%5C%5C%5C%5Cfrac%7B1%7D%7B500%7D%20%3D%20%20%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%5C%5C%5C%5Clog%28%5Cfrac%7B1%7D%7B500%7D%29%20%3D%20log%20%5B%280.5%29%5E%7B%5Cfrac%7Bt%7D%7B34%7D%7D%5D%5C%5C%5C%5Clog%28%5Cfrac%7B1%7D%7B500%7D%29%20%20%3D%20%5Cfrac%7Bt%7D%7B34%7D%20log%280.5%29%5C%5C%5C%5C-2.699%20%3D%20%5Cfrac%7Bt%7D%7B34%7D%20%28-0.301%29%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B2.699%20%5Ctimes%2034%7D%7B0.301%7D%20%5C%5C%5C%5Ct%20%3D%20304.8%20%5C%20s)
Therefore, the time taken for the radioactive element to decay to 1 g is 304.8 s.
1 litre = 1000 millilitres so 1200-200= 1000 millilitres left or 1 litre left
Answer: I’m not really sure what the correct answer is if you could help that would be great so let me know
Step-by-step explanation:
The question is for any rational function. I give one example in picture below. There we can see that first part of the "rule" is true. we indeed have vertical asymptotes at every x value where denominator is zero in this case x = 3 and x = 1. but second part of the rule is not true. we can see that if we inverse x ( we have factor that looks like a - x we get positive function between asymptotes.
Answer is False
You can make about 11 burgers with that