1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
3 years ago
14

Match the parabolas represented by the equations with their foci.

Mathematics
1 answer:
Elenna [48]3 years ago
8 0

Function 1 f(x)=- x^{2} +4x+8


First step: Finding when f(x) is minimum/maximum
The function has a negative value x^{2} hence the f(x) has a maximum value which happens when x=- \frac{b}{2a}=- \frac{4}{(2)(1)}=2. The foci of this parabola lies on x=2.

Second step: Find the value of y-coordinate by substituting x=2 into f(x) which give y=- (2)^{2} +4(2)+8=12

Third step: Find the distance of the foci from the y-coordinate
y=- x^{2} +4x+8 - Multiply all term by -1 to get a positive x^{2}
-y= x^{2} -4x-8 - then manipulate the constant of y to get a multiply of 4
4(- \frac{1}{4})y= x^{2} -4x-8
So the distance of focus is 0.25 to the south of y-coordinates of the maximum, which is 12- \frac{1}{4}=11.75

Hence the coordinate of the foci is (2, 11.75)

Function 2: f(x)= 2x^{2}+16x+18

The function has a positive x^{2} so it has a minimum

First step - x=- \frac{b}{2a}=- \frac{16}{(2)(2)}=-4
Second step - y=2(-4)^{2}+16(-4)+18=-14
Third step - Manipulating f(x) to leave x^{2} with constant of 1
y=2 x^{2} +16x+18 - Divide all terms by 2
\frac{1}{2}y= x^{2} +8x+9 - Manipulate the constant of y to get a multiply of 4
4( \frac{1}{8}y= x^{2} +8x+9

So the distance of focus from y-coordinate is \frac{1}{8} to the north of y=-14
Hence the coordinate of foci is (-4, -14+0.125) = (-4, -13.875)

Function 3: f(x)=-2 x^{2} +5x+14

First step: the function's maximum value happens when x=- \frac{b}{2a}=- \frac{5}{(-2)(2)}= \frac{5}{4}=1.25
Second step: y=-2(1.25)^{2}+5(1.25)+14=17.125
Third step: Manipulating f(x)
y=-2 x^{2} +5x+14 - Divide all terms by -2
-2y= x^{2} -2.5x-7 - Manipulate coefficient of y to get a multiply of 4
4(- \frac{1}{8})y= x^{2} -2.5x-7
So the distance of the foci from the y-coordinate is -\frac{1}{8} south to y-coordinate

Hence the coordinate of foci is (1.25, 17)

Function 4: following the steps above, the maximum value is when x=8.5 and y=79.25. The distance from y-coordinate is 0.25 to the south of y-coordinate, hence the coordinate of foci is (8.5, 79.25-0.25)=(8.5,79)

Function 5: the minimum value of the function is when x=-2.75 and y=-10.125. Manipulating coefficient of y, the distance of foci from y-coordinate is \frac{1}{8} to the north. Hence the coordinate of the foci is (-2.75, -10.125+0.125)=(-2.75, -10)

Function 6: The maximum value happens when x=1.5 and y=9.5. The distance of the foci from the y-coordinate is \frac{1}{8} to the south. Hence the coordinate of foci is (1.5, 9.5-0.125)=(1.5, 9.375)

You might be interested in
Help me show the work please<br>​
m_a_m_a [10]

Answer:

We are working with 2 vertical angles which are ALWAYS equal.

Therefore, 2 + 3x = 62

3x = 60

Therefore, x = 20

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Raportul a doua catete ale unui triunghi dreptunghic este de 3 supra 7,iar inaltimea este de 42cm.Aflati inaltimea,catetele,ipot
Basile [38]

Answer:

could you write in in english

Step-by-step explanation:

6 0
3 years ago
Which of the exponential functions below has a y-intercept of 2?
kondaur [170]

Answer:

the correct answer is B. g(x)=3^x +1

Step-by-step explanation:

I just took the test

Hope this helps

6 0
4 years ago
Find the equation of the line parallel to the line 16x - 4y = 48 and passes through the point (-4,-2).
vampirchik [111]

Answer:

16x - 4y = -56

8 0
3 years ago
Si yo tengo una canasta llena de mangos y piñas, de las cuales hay 30
skelet666 [1.2K]

Respuesta: Es más probable sacar un mango.

Explicación:

La probabilidad se refiere a la posibilidad de que un evento occura y no otro. En el caso que se describe, la probabilidad de sacar cada fruta puede ser calculada dividiendo el total de cada fruta en el número de frutas totales:

Probabilidad de sacar un mango:

\frac{cantidad de mangos}{cantidad de frutas en la canasta} =  \frac{30}{50}  =0.6

Probabilidad de sacar una piña:

\frac{cantidad de pinas}{cantidad de frutas en la canasta} = \frac{20}{50} = 0.4

De acuerdo a lo anterior la probabilidad de sacar un mango es de 0.6 o de 60% (multiplica la probabilidad por 100 para saber su equivalente en porcentaje), mientras que la probabilidad de sacar un mango es de 0.4 o 40% lo cual es mucho más bajo. Es decir que es más probable sacar un mango.

7 0
3 years ago
Other questions:
  • Solve<br> 2x -y =4<br> 5x -2.5y =10
    5·1 answer
  • I need help with this problem
    8·1 answer
  • Complete the steps to demonstrate why you multiply by the reciprocal when dividing fractions
    9·1 answer
  • What is the domain of the function f(x) = 4x − 16?
    5·1 answer
  • it costs 4.25 for 1 pound of roast beef. how much will it cost to purchase 2.5 pounds of roast beef? round to nearest cent
    7·1 answer
  • 5+2(10-4) ask question?​
    7·2 answers
  • A shelf is built on a wall, as shown below. What is the value of x?
    11·1 answer
  • Need help ill pay a lot just do my math test. answer every question
    13·1 answer
  • Help plssssssssssssssssss
    12·1 answer
  • Solve for n.<br><br> 11(n – 1) + 35 = 3n<br><br> n = –6<br> n = –3<br> n = 3<br> n = 6
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!