Answer:
Tube 2 has a total dilution of 1:50
Explanation:
We have a 2 ml serum sample added to a 18 mL phosphate buffered saline sample in tube 1. This means now in tube 1 there is 20 mL.
We have a 1:10 (= 2:20) dilution here.
10 ml of this 1:10 diluted tube 1 is taken and added to a 40 mL of PBS in tube 2.
Now we have 50 mL in tube 2.
This is a 10:50 (= 1:5) dilution.
The total dilution is 10x5 = 50
So the total ditultion has a rate 1:50
Tube 2 has a total dilution of 1:50
<h3>✽ - - - - - - - - - - - - - - - ~<u>Hello There</u>!~ - - - - - - - - - - - - - - - ✽</h3>
➷ The correct answer would be A. Agitation (i.e. stirring)
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
I'm not sure if this is the exact answer for I do not learn this in school yet. But I hope this helps!
3 ZnS + 2 AlP = Zn3P2 + Al2S3
- Kana
Answer: it would be a 1 to 1 ratio
Explanation: originally it would be 2 to 2 but you have to reduce
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.