Answer:
difference in flight time= 0.3023 hour
Explanation:
The question is incomplete, but I found it in your textbook.
Spped of aircraft = 850 km/h
Opposing speed of wind = 90km/h
Hence, the net speed when it's travelling west = 850 - 90 = 760 km/hr
The distance covered = 1200km
time taken = distance/ time = 1200/ 760 = 1.5789 hours
When coming back, the speed of the wind is complementary to the speed of the aircraft so
net speed when it's coming back = 850 +90 = 940 km/hr
time taken in this instance = 1200/ 940 = 1.2765 hours
Hence, the difference in flight time= 1.5789 - 1.2765 = 0.3023 hour
Answer:
True
Explanation:
Sound is all about vibrations.
The source of a sound vibrates, bumping into nearby air molecules which in turn bump into their neighbor's, and so forth.
Answer:
x=7227
y=1678
(7227,1678)
Explanation:
Ok, check the picture I attached you, because of the problem don't give us aditional information, let's asume that the projectile is fired from an initial position x=0 and y=0. Now let's use projectile motion equations, but firs let's find the initial velocity components in x-axis and y-axis:


Now, let's find the x coordinate with this equation:

Finally asumming a gravity constant g=9.8, let's find the y coordinate with the next equation:


Answer:
The magnitude of the electric force on a protein with this charge is 
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force

Where, F = force
E = electric field
q = charge
Put the value into the formula


Hence, The magnitude of the electric force on a protein with this charge is 
The correct answer is
<span>C. The current in the battery and in each resistor is the same.
In fact, when resistors are connected in series, the current flowing through them is the same in each resistor. This is also equal to the current flowing in the circuit, so it is the same as the current flowing through the battery.</span>