Explanation:
Pressure = force / area
P = (68 kg × 9.8 m/s²) / (2 × (0.04 m)²)
P = 208,250 Pa
Converting to psi:
P = 208,250 N/m² × (0.225 lbf/N) × (0.0254 m/in)²
P = 30.2 psi
It's the passing of traits/characteristics from the parent(s) to the offspring(kids).<span>This is how offspring cells become predisposed to the genes/traits of the parent cells</span>.
The body produces Buffers that can neutralize acids
A) The formula for kinetic energy is E = 1/2 mv^2, so the energy of the ball is 1/2 * 2 * 10^2 = 100J.
b) Energy is always conserved, and so if no energy is lost to resistive forces then all 100J of kinetic energy came from its potential energy at the top of the track.
c) The formula for potential energy is E = mgh, which we can rearrange for h = E/mg. We know the energy, the mass and the strength of gravity, so we can find h = 100 / (2*9.81) = 5.10m.
Assuming that it continues to accelerate at the same rate it will take another 10 seconds to reach 40 m/s.
Answer:
Explanation:
Since the first question states that there is a change in the velocity from rest to 20 m/s in 10 seconds time interval. So the acceleration experienced by the car during this 10 seconds should be determined first as follows:
Acceleration = (final velocity-initial velocity)/Time
Acceleration = (20-0)/10 = 2 m/s².
So this means the car is traveling with an acceleration of 2 m/s².
As it is stated that the car continues to move with same acceleration, then in the second case, the acceleration is fixed as 2 m/s², initial velocity as 20 m/s and final velocity as 40 m/s. So the time taken for the car to reach this velocity with the constant acceleration value will be as follows:
Time = Change in velocity/Acceleration
Time = (40-20)/2 = 20/2=10 s
So again in another 10 seconds by the car to reach 40 m/s from 20 m/s. Similarly the car will take a total of 20 seconds to reach from rest to 40 m/s value for velocity.