Answer:
g₂ = 11 m/s²
Explanation:
The value of free-fall acceleration on the surface of a planet is given by the following formula:

where,
g = free-fall acceleration
G = Universal Gravitational Constant
m = mass of the planet
r = radius of planet
FOR PLANET 1:
--------------------- equation (1)
FOR PLANET 2:

using equation (1):

<u>g₂ = 11 m/s²</u>
Answer:
(a)
(b) 
Solution:
As per the question:
Side of the cube, a = 4.4 cm
Coordinates of the diagonally opposite corner, A = <4.4, 4.4, 4.4> cm
Now,
(a) To calculate the unit vector:
(b) To calculate the angle between the two vectors say A and A' is given by:
(1)
Now,
The coordinates of the diagonally opposite corner, A' is <0, 0, 1> cm
Thus
Now,
Using equation (1) :


Thus


Answer:
The electric force is 
Explanation:
From the question we are told that
The Bohr radius at ground state is 
The values of the distance between the proton and an electron 
The electric force is mathematically represented as

Where n and p are charges on a single electron and on a single proton which is mathematically represented as

and k is the coulomb's constant with a value

substituting values
![F = \frac{9*10^{9} * [(1.60*10^{-19} ]^2)}{(2.63 * 0.529 * 10^{-10})^2}](https://tex.z-dn.net/?f=F%20%3D%20%20%5Cfrac%7B9%2A10%5E%7B9%7D%20%2A%20%20%5B%281.60%2A10%5E%7B-19%7D%20%5D%5E2%29%7D%7B%282.63%20%2A%200.529%20%2A%2010%5E%7B-10%7D%29%5E2%7D)

Answer:
Acceleration=4m/s²
Force applied =619.8N
Explanation:
Using equation of motion
V=u+at we have: u=o, v=50m/s
50= 0 + a×0.0121
a = 50/0.0121
a= 4m/s²
Neglecting resistance forces
F= ma, where a = v-u/t
F=m×(v-u)/t
F= 0.150 ×(50-0)/0.0121
F=7.5/0.0121
F= 619.8N