Answer
given,
position of particle
x(t)= A t + B t²
A = -3.5 m/s
B = 3.9 m/s²
t = 3 s
a) x(t)= -3.5 t + 3.9 t²
velocity of the particle is equal to the differentiation of position w.r.t. time.

------(1)
velocity of the particle at t = 3 s
v = -3.5 + 7.8 x 3
v = 19.9 m/s
b) velocity of the particle at origin
time at which particle is at origin
x(t)= -3.5 t + 3.9 t²
0 = t (-3.5 + 3.9 t )
t = 0, 
t = 0 , 0.897 s
speed of the particle at t = 0.897 s
from equation (1)
v = -3.9 + 7.8 t
v = -3.9 + 7.8 x 0.897
v = 3.1 m/s
Explanation:
Spring tides generally occur twice a month—during new and full moons, when the Earth, Sun, and Moon line up in a row. In this arrangement, the gravities of the Sun and Moon work together and have the strongest pull on Earth. This produces the largest difference between high and low tide.
Spring Tides
During full moon or new moon phases, the gravitational forces of the Sun and Moon are maximized, producing very large ranges of tidal highs and lows called spring tides
The kitten's velocity is V=0.625 m/s
<u>Explanation:</u>
<u>Solving the problem,</u>
Given
Mass=0.8 kg
Momentum=0.5 kg.m/s
Velocity=?
We have the formula,
P=M*V
V=P/M
V=0.5 kg.m/s/0.8 kg
V=0.625 m/s
The kitten's velocity is V=0.625 m/s
<u />
Force applied = F = 628 N
<span>Acceleration = a m/s² </span>
<span>Newton's 2nd law of motion : F = Ma </span>
<span> a = F/M -------- (1) </span>
<span>New mass of the crate = M1 = 3.8M kg </span>
<span>New acceleration = a1 = F/M1 = F/(3.8 M) ----- (2) </span>
<span>a1/a = {F/(3.8M)}/(F/M) = 1/3.8 = 10/38 = 5/19 ------- Answer</span>
Friction
Friction also affects the movement of an object on a slope. Friction is a force that offers resistance to movement when one object is in contact with another. Imagine now that you were on the downside of the object and applying force to keep the object in the same place (not moving)