1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
5

The free-fall acceleration at the surface of planet 1 is 22 m/s^2. The radius and the mass of planet 2 are twice those of planet

1. What is the free-fall acceleration on planet 2?
Physics
1 answer:
algol133 years ago
8 0

Answer:

g₂ = 11 m/s²

Explanation:

The value of free-fall acceleration on the surface of a planet is given by the following formula:

g = \frac{Gm}{r^2}

where,

g = free-fall acceleration

G = Universal Gravitational Constant

m = mass of the planet

r = radius of planet

FOR PLANET 1:

g_1 = \frac{Gm_1}{r_1^2}\\\\\frac{Gm_1}{r_1^2} = 22 m/s^2 --------------------- equation (1)

FOR PLANET 2:

g_2 = \frac{Gm_2}{r_2^2}\\\\g_2 = \frac{G(2m_1)}{(2r_1)^2}\\\\g_2 = \frac{1}{2}\frac{Gm_1}{r_1^2}\\\\

using equation (1):

g_2 = \frac{g_1}{2}\\\\g_2 = \frac{22\ m/s^2}{2}

<u>g₂ = 11 m/s²</u>

You might be interested in
Why should the substage condenser not be included in computing the magnification?
Leni [432]
The reason as to why the substage condenser does not need to be included in computing the magnification and the only component needed is the ocular lens and the objective lenses is because the condenser is only responsible for gathering light and it does not contribute with the magnification of the object under the microscope.
5 0
3 years ago
Read 2 more answers
A metal block suspended from a spring balance is submerged in water. You observe that the block displaces 55 cm3 of water and th
DiKsa [7]

Answer:

8977.7 kg/m^3

Explanation:

Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3

Reading of balance when block is immersed in water = 4.3 N

According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.

Buoyant force = weight of the water displaced by the block

Buoyant force = Volume of water displaced x density of water x g

                        = 55 x 10^-6 x 1000 x .8 = 0.539 N

True weight of the body = Weight of body in water + buoyant force

m g = 4.3 + 0.539 = 4.839

m = 0.4937 kg

Density of block = mass of block / volume of block

= \frac{0.4937}{55\times10^{-6}}

Density of block = 8977.7 kg/m^3

4 0
3 years ago
How have batteries gotten better over time?
babymother [125]
The size has gotten smaller, they last longer, easier to carry around, safer, etc
5 0
3 years ago
Read 2 more answers
Convert the number from scientific into standard notation: 5.9 x 10-2
guapka [62]
Move the decimal point to:
Left : (if the exponent of ten is a negative number -) ... OUR CASE HERE (-2)
or to
Right : (if the exponent is positive +).

You should move the point as many times as the exponent indicates.
Do not write the power of ten anymore.

So, standard form is:
Two points to the left {Exponent of Ten is Negative (-2)}
0.059 ... (without the 10)
6 0
3 years ago
A certain frictionless simple pendulum having a length L and mass M swings with period T. If both L and M are doubled, what is t
vampirchik [111]

The new period is D) √2 T

\texttt{ }

<h3>Further explanation</h3>

Let's recall Elastic Potential Energy and Period of Simple Pendulum formula as follows:

\boxed{E_p = \frac{1}{2}k x^2}

where:

<em>Ep = elastic potential energy ( J )</em>

<em>k = spring constant ( N/m )</em>

<em>x = spring extension ( compression ) ( m )</em>

\texttt{ }

\boxed{T = 2\pi \sqrt{ \frac{L}{g} }}

where:

<em>T = period of simple pendulum ( s )</em>

<em>L = length of pendulum ( m )</em>

<em>g = gravitational acceleration ( m/s² )</em>

Let us now tackle the problem!

\texttt{ }

<u>Given:</u>

initial length of pendulum = L₁ = L

initial mass = M₁ = M

final length of pendulum = L₂ = 2L

final mass = M₂ = 2M

initial period = T₁ = T

<u>Asked:</u>

final period = T₂ = ?

<u>Solution:</u>

T_1 : T_2 = 2\pi \sqrt{ \frac{L_1}{g} }} : 2\pi \sqrt{ \frac{L_2}{g} }}

T_1 : T_2 = \sqrt{L_1} : \sqrt{L_2}

T : T_2 = \sqrt{L} : \sqrt{2L}

T : T_2 = 1 : \sqrt{2}

\boxed {T_2 = \sqrt{2}\ T}

\texttt{ }

<h3>Learn more</h3>
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Young Modulus : brainly.com/question/9202964
  • Simple Harmonic Motion : brainly.com/question/12069840

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Elasticity

3 0
3 years ago
Read 2 more answers
Other questions:
  • A record of travel along a straight path is as follows: 1. Start from rest with constant acceleration of 2.65 m/s2 for 17.0 s. 2
    6·1 answer
  • What do the arrows at point three indicate
    6·1 answer
  • A major-league pitcher can throw a baseball in excess of 41.0 m/s. If a ball is thrown horizontally at this speed, how much will
    7·1 answer
  • An alarm clock has a resistance of 14,000 ohms and is plugged into a 120-volt outlet. How much power does the clock use?
    5·2 answers
  • An electron in a vacuum chamber is fired with a speed of 9800 km/s toward a large, uniformly charged plate 75 cm away. The elect
    10·1 answer
  • a 2 kg laptop sits on the floor near a 4 kg jar of pennies. if the force of gravity between them is 3.42× 10⁻¹⁰ , how far apart
    9·1 answer
  • More current makes a ________ electromagnet.<br> longer<br> stronger<br> weaker
    6·2 answers
  • A rubber ball is shot straight up from the ground with a speed of 12 m/s. Simultaneously, a second identical rubber ball is drop
    13·1 answer
  • Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 167 cm , but its circumference is decreasi
    12·1 answer
  • Which of the following are true about S waves
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!