1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
2 years ago
5

The free-fall acceleration at the surface of planet 1 is 22 m/s^2. The radius and the mass of planet 2 are twice those of planet

1. What is the free-fall acceleration on planet 2?
Physics
1 answer:
algol132 years ago
8 0

Answer:

g₂ = 11 m/s²

Explanation:

The value of free-fall acceleration on the surface of a planet is given by the following formula:

g = \frac{Gm}{r^2}

where,

g = free-fall acceleration

G = Universal Gravitational Constant

m = mass of the planet

r = radius of planet

FOR PLANET 1:

g_1 = \frac{Gm_1}{r_1^2}\\\\\frac{Gm_1}{r_1^2} = 22 m/s^2 --------------------- equation (1)

FOR PLANET 2:

g_2 = \frac{Gm_2}{r_2^2}\\\\g_2 = \frac{G(2m_1)}{(2r_1)^2}\\\\g_2 = \frac{1}{2}\frac{Gm_1}{r_1^2}\\\\

using equation (1):

g_2 = \frac{g_1}{2}\\\\g_2 = \frac{22\ m/s^2}{2}

<u>g₂ = 11 m/s²</u>

You might be interested in
Which of the following happens to an object in uniform circular motion?
podryga [215]

Answer:

As an object moves in a circle, it is constantly changing its direction. ... Accelerating objects are objects which are changing their velocity - either the speed (i.e., magnitude of the velocity vector) or the direction. An object undergoing uniform circular motion is moving with a constant speed.

5 0
3 years ago
A stone is dropped into a river from a bridge at a height h above the water. Another stone is thrown vertically down at a time t
Mumz [18]

Answer:

v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}

Explanation:

We will apply the equations of kinematics to both stones separately.

First stone:

Let us denote the time spent after the second stone is thrown as 'T'.

y - y_0 = v_{y_0}(t+T) + \frac{1}{2}a(t+T)^2\\0 - h = 0 + \frac{1}{2}(-g)(t+T)^2\\(t+T)^2 = \frac{2h}{g}\\T = \sqrt{\frac{2h}{g}}-t

Second stone:

y - y_0 = v_{y_0}T + \frac{1}{2}aT^2\\0 - h = v_{y_0}T -\frac{1}{2}gT^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\sqrt{\frac{2h}{g}} - t)^2\\-h = v_{y_0}(\sqrt{\frac{2h}{g}} - t) - \frac{g}{2}(\frac{2h}{g} + t^2 - 2t\sqrt{\frac{2h}{g}})\\-h = v_{y_0}\sqrt{\frac{2h}{g}} - v_{y_0}t - h -\frac{g}{2}t^2 + gt\sqrt{\frac{2h}{g}}\\v_{y_0}(\sqrt{\frac{2h}{g}} - t) = \frac{g}{2}t^2 - gt\sqrt{\frac{2h}{g}}\\v_{y_0} = \frac{\frac{g}{2}t(t - 2\sqrt{\frac{2h}{g}})}{\sqrt{\frac{2h}{g}} - t}

6 0
3 years ago
Read 2 more answers
Jhon is 12 y o his train is 5 minutes late Jhon has an apple that wheigs half it s own mass calculate the mass of the sun​
pav-90 [236]
Given the following information we have 20 watermelons from mark and 10 fishes from kim therefore we add the longitude of Walmart to the latitude of sams club and end up with a total of 1,000 dish soaps then we convert that into inches which leaves us at 20,000,000 inches of cats then multiply that number to 10 giraffes and we get
1.989 × 10^30 kg and therefore the mass of the sun is 1.989 × 10^30 kg.
7 0
3 years ago
How far can a sound wave travel in 90 seconds when the ambient air temperature is 10 C?
Ksju [112]

Answer:

s = 30330.7 m = 30.33 km

Explanation:

First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:

v = v₀√[T/273 k]

where,

v = speed of sound at given temperature = ?

v₀ = speed of sound at 0°C = 331 m/s

T = Given Temperature = 10°C + 273 = 283 k

Therefore,

v = (331 m/s)√[283 k/273 k]

v = 337 m/s

Now, we use the following formula to calculate the distance traveled  by sound:

s = vt

where,

s = distance traveled = ?

t = time taken = 90 s

Therefore,

s = (337 m/s)(90 s)

<u>s = 30330.7 m = 30.33 km</u>

6 0
3 years ago
An apple hanging from a limb has potential energy because of its height . If it falls ,what becomes of this energy just before i
sineoko [7]

Answer: Just before its hits the ground it becomes kinetic energy and when it hits the ground it becomes in another form of energy (acoustic energy or thermal energy, for example)

Explanation:

Energy is the ability of matter to produce work in the form of movement, light, heat, among others.

In this sense, according to the Conservation of Energy principle: <em>"energy is not created or destroyed, it is transformed."</em>

So, in the case of the apple, its total energy is conserved.

When the apple is hanging from a limb, it has zero kinetic energy K_{o}=0 (because it is at rest) and has gravitational potential energy U_{o}, which depends on the mass m, the acceleration due gravity g and the height h:

U_{o}=mgh

When the apple falls, just before its hits the ground, this gravitational potential energy transforms in kinetic energy K_{1} (since the apple is moving), which depends on the mass and velocity V of the apple:

K_{1}=\frac{1}{2}mV^{2}

When the apple hits the ground, the gravitational potential energy is zero (h=0) and the kinetic energy transforms into some other form of energy (acoustic energy or thermal energy, for example).

3 0
2 years ago
Other questions:
  • A book is thrown downward from the library window with a speed of 2.0\,\dfrac{\text m}{\text s}2.0 s m ​ 2, point, 0, start frac
    5·2 answers
  • A bucket of warm water can be considered a closed system for a very short period of time. Which best explains this phenomenon? A
    9·1 answer
  • 1. How much work is done on a 20-N rock that you lift 1.5 meters up?
    11·1 answer
  • A block of mass 2.95 kg is placed against a horizontal spring of constant k = 820 N/m and pushed so the spring compresses by 0.0
    11·1 answer
  • Which is not an advantage of radio telescopes over optical telescopes?
    10·1 answer
  • What is Einstein's theory of realtivity?
    8·2 answers
  • A gray kangaroo can bound across level ground with each jump carrying it 8.7 from the takeoff point. Typically the kangaroo leav
    13·1 answer
  • What amount of charge passes through a 3.0 amp television in 1.3 hours?
    7·1 answer
  • What are magnetic materials
    12·1 answer
  • What is the total distance, side to side, that the top of the building moves during such an oscillation
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!