I think it would be Kriptonite
Answer:
Fe(CN)₂, FeCO₃, Pb(CN)₄, Pb(CO₃)₂
Explanation:
Cations (positively charged ions) can only form ionic bonds with anions (negatively charged ions). However, you can't just simply put one cation and one anion together to form a compound. Each compound needs to been neutral, or have an overall charge of 0. When cations and anions do not have charges that perfectly cancel, you need to modify the amount of each ion in the compound.
1.) Fe(CN)₂
-----> Fe²⁺ and CN⁻
-----> +2 + (-1) + (-1) = 0
2.) FeCO₃
-----> Fe²⁺ and CO₃²⁻
-----> +2 + (-2) = 0
3.) Pb(CN)₄
-----> Pb⁴⁺ and CN⁻
-----> +4 + (-1) + (-1) + (-1) + (-1) = 0
4.) Pb(CO₃)₂
-----> Pb⁴⁺ and CO₃²⁻
-----> +4 +(-2) + (-2) = 0
Answer:
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Explanation:
Iron can be formed in two steps.
Step 1: 2 C(s) + O₂(g) → 2 CO(g)
Step 2: Fe₂O₃(s) + 3 CO(g) → 2 Fe(s) + 3 CO₂(g)
In order to get the net chemical equation, we will multiply the first step by 3, the second step by 2, and then add them.
6 C(s) + 3 O₂(g) → 6 CO(g)
+
2 Fe₂O₃(s) + 6 CO(g) → 4 Fe(s) + 6 CO₂(g)
--------------------------------------------------------------------------------------------------
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) + 6 CO(g) → 6 CO(g) + 4 Fe(s) + 6 CO₂(g)
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Answer:
Option D. pH= 1.3 strong acid
Explanation:
From the question given:
The hydrogen ion concentration [H+] = 0.05 M
pH = —Log [H+]
pH = —Log 0.05
pH = 1.3
Since the pH lies between 0 and 7, the solution is acidic. Since the pH value is low, the solution is a strong acid
The age of the fossil given the present amount of Carbon-14 is given in the equation,
A(t) = A(o)(0.5)^t/h
where A(t) is the current amount, A(o) is the initial amount, t is time and h is the half-life. Substituting the known values to the equation,
A(t) / A(o) = 0.125 = (0.5)^(t/5730)
The value of t from the equation is 17190.
Thus, the age of the fossil is mostly likely to be 17190 years old.