1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
4 years ago
6

Calculate the equilibrium constant k for the isomerization of glucose-1-phosphate to fructose-6-phosphate at 298 k. express your

answer numerically using two significant figures. hints
Chemistry
2 answers:
o-na [289]4 years ago
7 0

The equilibrium constant for isomerization reaction is \boxed{9.615}

Further Explanation:

The standard Gibbs free energy change in a reaction \left( {{{\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }}} \right) is the difference of sum of the standard free energies of formation of product molecules and sum of standard free energies of formation of reactant molecules at the standard conditions. The formula used to calculate the value of standard Gibbs free energy  change for a reaction \left( {{{\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }}} \right) is as follows:

\Delta\text{G}_{\text{rxn}}^{\circ}=\sum\text{n}\Delta\text{G}_{\text{f}(\text{products})}^{\circ}-\sum\text{m}\Delta\text{G}_{\text{f}(\text{reactants})}^{\circ}

Here, n is the stoichiometric coefficients of products, and m are the stoichiometric coefficients of reactants in a balanced chemical equation.

The formula to determine the relationship between change in standard Gibbs free energy \left( \Delta{\text{G}^{\circ}} \right) and equilibrium constant \left({\text{K}}\right) is given as follows:

{\Delta }}{{\text{G}}^{{^\circ }}} = - {\text{RTlnK}}       ......(1)

Here,

\Delta{\text{G}^{\circ} is the standard Gibbs free energy change.

{\text{R} is the gas constant.

{\text{T}} is the temperature in Kelvin.

{\text{K}} is the equilibrium constant.

The isomerization of glucose-1-phosphate to fructose-6-phosphate occurs in 2 steps:  

The reaction of step 1 is as follows:

{\text{glucose - 1 - phosphate}} \to {\text{glucose - 6 - phosphate}}

                                       ......(2)

\Delta{\text{G}^{\circ}_{1} for equation (2) is  - 7.28\;{\text{kJ/mol}}

The reaction of step 2 is as follows:

{\text{fructose - 6 - phosphate}} \to {\text{glucose - 6 - phosphate}}

                                                   ......(3)

\Delta{\text{G}^{\circ}_{2} for equation (3) is  - 1.67\;{\text{kJ/mol}}

Reverse the reaction of step 2.

{\text{glucose - 6 - phosphate}} \to {\text{frutcose - 6 - phosphate}}

                                                ......(4)

\Delta{\text{G}^{\circ}_{3} for equation (4) is + 1.67\;{\text{kJ/mol}}

Add equation (1) and (3) to get the final equation.

{\text{glucose - 1 - phosphate}} \to {\text{frutcose - 6 - phosphate}}

To calculate \Delta {\text{G}}_{{\text{rxn}}}^{^\circ }}, add \Delta{\text{G}^{\circ}_{1} and \Delta{\text{G}^{\circ}_{3} as follows:  

\Delta{\text{G}^{\circ}_{\text{rxn}}=\Delta{\text{G}^{\circ}_{1}+\Delta{\text{G}^{\circ}_{3}                       ......(5)

Substitute - 7.28\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ}_{1} and + 1.67\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ}_{3} in equation (5).

\begin{aligned}\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }} &=  - 7.28\;{\text{kJ/mol + }} + 1.67\;{\text{kJ/mol}}\\{\text{}}&= - 5.61\;{\text{kJ/mol}}\\\end{aligned}

For equilibrium constant (K), rearrange equation (1)

{\text{K}}={\text{e}}\frac{-\Delta{\text{G}}^{\circ}}{\text{RT}}    ......(6)

Substitute - 5.61\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ},8.314\;{\text{J/mol}} \cdot {\text{K}} for R and 298\;{\text{K}} for T in equation (6)

\begin{aligned} {\text{K}}&= {{\text{e}}^{\frac{{ - \left( { - 5.61\;{\text{kJ/mol}}} \right)}}{{\left( {8.314\;{\text{J/mol}} \cdot {\text{K}}} \right)\left( {\frac{{{\text{1J}}}}{{1000{\text{kJ}}}}} \right)\left( {298\;{\text{K}}} \right)}}}}\\&= {{\text{e}}^{2.2634}}\\&= 9.615\\\end{aligned}

The equilibrium constant for the reaction is 9.615.

Learn more:

1. The change in standard gibbs free is for a reaction: brainly.com/question/10838453

2. Determination of the equilibrium constant for pure water: brainly.com/question/3467841

Answer details:

Grade: Senior Secondary School

Subject: Chemistry

Chapter: Chemical Equilibrium

Keywords: Standard Gibbs free energy, equilibrium, constant, glucose-1-phosphate and fructose-6-phosphate.

k0ka [10]4 years ago
6 0
We cannot solve this problem without using empirical data. These reactions have already been experimented by scientists. The standard Gibb's free energy, ΔG°, (occurring in standard temperature of 298 Kelvin) are already reported in various literature. These are the known ΔG° for the appropriate reactions.

<span>glucose-1-phosphate⟶glucose-6-phosphate          ΔG∘=−7.28 kJ/mol
fructose-6-phosphate⟶glucose-6-phosphate          ΔG∘=−1.67 kJ/mol
</span>
Therefore, the reaction is a two-step process wherein glucose-6-phosphate is the intermediate product.

glucose-1-phosphate⟶glucose-6-phosphate⟶fructose-6-phosphate 

In this case, you simply add the ΔG°. However, since we need the reverse of the second reaction to end up with the terminal product, fructose-6-phosphate, you'll have to take the opposite sign of ΔG°.

ΔG°,total = −7.28 kJ/mol  + 1.67 kJ/mol = -5.61 kJ/mol

Then, the equation to relate ΔG° to the equilibrium constant K is

ΔG° = -RTlnK, where R is the gas constant equal to 0.008317 kJ/mol-K.
-5.61 kJ./mol = -(0.008317 kJ/mol-K)(298 K)(lnK)
lnK = 2.2635
K = e^2.2635
K = 9.62


You might be interested in
Will was riding his bike when a dog ran out in front of him. he slammed on his brakes. during this quick stop, some of the mecha
riadik2000 [5.3K]

Answer is: heat energy.

Braking is the process of controlling the velocity of an object (in this example bicycle) by inhibiting its motion.

Mechanical energy can be either kinetic or potential energy and has to do with the energy of position and motion of an object.

Kinetic energy is energy of the speed of an object and how much mass it has; basically how the object is moving.

Potential energy is type of energy is stored energy; it can be increased by getting into a higher position and/or stretching an object such as a rubber band.

A mechanical brake applies a friction force to convert the kinetic energy of the bicycle into heat energy which then dissipates into the atmosphere.

3 0
4 years ago
Read 2 more answers
How many minutes will it take for the quantity of n2o5 to drop to 1.9×10−2 mol ?
Novay_Z [31]

<span>Missing question: The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g) + O2(g) at 70°</span><span>C is 6.82×10−3 s−1. Suppose we start with 2.70×10−2 mol of N2O5(g) in a volume of 1.8 L .
</span>c₀(N₂O₅) = 0,027 mol ÷ 1,8 L.<span>
c</span>₀(N₂O₅) = 0,015 mol/L.<span>
c(N</span>₂O₅) = 0,019 mol/ 1,8 L = 0,01055 mol/L.<span>
k = 6,82·10</span>⁻³ s⁻¹.<span>
ln c(N</span>₂O₅) = ln c₀(N₂O₅) - k·t.<span>
t = (ln c</span>₀(N₂O₅) - ln c(N₂O₅)) ÷ k.<span>
t = 0,35 ÷ 0,00682 s</span>⁻¹.<span>
t = 51 s = 0,86 min.</span>

3 0
3 years ago
What type of bonds exists between neighboring water molecules?
Sindrei [870]

Answer:

covalent bonds

Explanation:

8 0
3 years ago
Whats the difference between biomass and fossil Fuels
Pepsi [2]
Difference between biomass and fossil fuels is one of time scale.
8 0
3 years ago
Read 2 more answers
What type of elements make up most of the periodic table
nignag [31]
Basic elements, and components make up most of the periodic table of elements 
4 0
4 years ago
Read 2 more answers
Other questions:
  • 8. Converting Units The volumes in your data are in millimeters, which are equivalent to cubic centimeters, cm3. But your areas
    14·1 answer
  • Isotopes have the same ____________ but have a new atomic mass because they _________________. *
    5·1 answer
  • What is the formula of Potassium hydroxide? What is it common name? Is it Alkali?​
    14·2 answers
  • One hundred million copper atoms are arranged in a line. Which is a reasonable estimate for the length of this line?
    12·1 answer
  • WILL MARK U AS BRAINLIEST PLZ HELP ME!!
    9·1 answer
  • Geologists can use a radioactive isotope's to help determine the age of some rocks. A. half-life B. growth rate C. double-life D
    15·1 answer
  • Use the image to answer the question.
    10·1 answer
  • Đốt cháy hoàn toàn 0,1 mol axit đơn chức cần V lít O2 ở đktc. Thu được 0,3 mol CO2 và 0,2 mol h20 vậy giá trị V là
    7·1 answer
  • What are some possible ways these rocks were formed? Be sure to discuss all 3 rocks.<br> pls help me
    11·2 answers
  • Na2O + H2O =&gt; NaOH *<br> Your answer<br> Balancing equations only the coefficient ratios
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!