1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
6

Calculate the equilibrium constant k for the isomerization of glucose-1-phosphate to fructose-6-phosphate at 298 k. express your

answer numerically using two significant figures. hints
Chemistry
2 answers:
o-na [289]3 years ago
7 0

The equilibrium constant for isomerization reaction is \boxed{9.615}

Further Explanation:

The standard Gibbs free energy change in a reaction \left( {{{\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }}} \right) is the difference of sum of the standard free energies of formation of product molecules and sum of standard free energies of formation of reactant molecules at the standard conditions. The formula used to calculate the value of standard Gibbs free energy  change for a reaction \left( {{{\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }}} \right) is as follows:

\Delta\text{G}_{\text{rxn}}^{\circ}=\sum\text{n}\Delta\text{G}_{\text{f}(\text{products})}^{\circ}-\sum\text{m}\Delta\text{G}_{\text{f}(\text{reactants})}^{\circ}

Here, n is the stoichiometric coefficients of products, and m are the stoichiometric coefficients of reactants in a balanced chemical equation.

The formula to determine the relationship between change in standard Gibbs free energy \left( \Delta{\text{G}^{\circ}} \right) and equilibrium constant \left({\text{K}}\right) is given as follows:

{\Delta }}{{\text{G}}^{{^\circ }}} = - {\text{RTlnK}}       ......(1)

Here,

\Delta{\text{G}^{\circ} is the standard Gibbs free energy change.

{\text{R} is the gas constant.

{\text{T}} is the temperature in Kelvin.

{\text{K}} is the equilibrium constant.

The isomerization of glucose-1-phosphate to fructose-6-phosphate occurs in 2 steps:  

The reaction of step 1 is as follows:

{\text{glucose - 1 - phosphate}} \to {\text{glucose - 6 - phosphate}}

                                       ......(2)

\Delta{\text{G}^{\circ}_{1} for equation (2) is  - 7.28\;{\text{kJ/mol}}

The reaction of step 2 is as follows:

{\text{fructose - 6 - phosphate}} \to {\text{glucose - 6 - phosphate}}

                                                   ......(3)

\Delta{\text{G}^{\circ}_{2} for equation (3) is  - 1.67\;{\text{kJ/mol}}

Reverse the reaction of step 2.

{\text{glucose - 6 - phosphate}} \to {\text{frutcose - 6 - phosphate}}

                                                ......(4)

\Delta{\text{G}^{\circ}_{3} for equation (4) is + 1.67\;{\text{kJ/mol}}

Add equation (1) and (3) to get the final equation.

{\text{glucose - 1 - phosphate}} \to {\text{frutcose - 6 - phosphate}}

To calculate \Delta {\text{G}}_{{\text{rxn}}}^{^\circ }}, add \Delta{\text{G}^{\circ}_{1} and \Delta{\text{G}^{\circ}_{3} as follows:  

\Delta{\text{G}^{\circ}_{\text{rxn}}=\Delta{\text{G}^{\circ}_{1}+\Delta{\text{G}^{\circ}_{3}                       ......(5)

Substitute - 7.28\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ}_{1} and + 1.67\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ}_{3} in equation (5).

\begin{aligned}\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }} &=  - 7.28\;{\text{kJ/mol + }} + 1.67\;{\text{kJ/mol}}\\{\text{}}&= - 5.61\;{\text{kJ/mol}}\\\end{aligned}

For equilibrium constant (K), rearrange equation (1)

{\text{K}}={\text{e}}\frac{-\Delta{\text{G}}^{\circ}}{\text{RT}}    ......(6)

Substitute - 5.61\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ},8.314\;{\text{J/mol}} \cdot {\text{K}} for R and 298\;{\text{K}} for T in equation (6)

\begin{aligned} {\text{K}}&= {{\text{e}}^{\frac{{ - \left( { - 5.61\;{\text{kJ/mol}}} \right)}}{{\left( {8.314\;{\text{J/mol}} \cdot {\text{K}}} \right)\left( {\frac{{{\text{1J}}}}{{1000{\text{kJ}}}}} \right)\left( {298\;{\text{K}}} \right)}}}}\\&= {{\text{e}}^{2.2634}}\\&= 9.615\\\end{aligned}

The equilibrium constant for the reaction is 9.615.

Learn more:

1. The change in standard gibbs free is for a reaction: brainly.com/question/10838453

2. Determination of the equilibrium constant for pure water: brainly.com/question/3467841

Answer details:

Grade: Senior Secondary School

Subject: Chemistry

Chapter: Chemical Equilibrium

Keywords: Standard Gibbs free energy, equilibrium, constant, glucose-1-phosphate and fructose-6-phosphate.

k0ka [10]3 years ago
6 0
We cannot solve this problem without using empirical data. These reactions have already been experimented by scientists. The standard Gibb's free energy, ΔG°, (occurring in standard temperature of 298 Kelvin) are already reported in various literature. These are the known ΔG° for the appropriate reactions.

<span>glucose-1-phosphate⟶glucose-6-phosphate          ΔG∘=−7.28 kJ/mol
fructose-6-phosphate⟶glucose-6-phosphate          ΔG∘=−1.67 kJ/mol
</span>
Therefore, the reaction is a two-step process wherein glucose-6-phosphate is the intermediate product.

glucose-1-phosphate⟶glucose-6-phosphate⟶fructose-6-phosphate 

In this case, you simply add the ΔG°. However, since we need the reverse of the second reaction to end up with the terminal product, fructose-6-phosphate, you'll have to take the opposite sign of ΔG°.

ΔG°,total = −7.28 kJ/mol  + 1.67 kJ/mol = -5.61 kJ/mol

Then, the equation to relate ΔG° to the equilibrium constant K is

ΔG° = -RTlnK, where R is the gas constant equal to 0.008317 kJ/mol-K.
-5.61 kJ./mol = -(0.008317 kJ/mol-K)(298 K)(lnK)
lnK = 2.2635
K = e^2.2635
K = 9.62


You might be interested in
Orbital notation of h
shutvik [7]

Answer: in the box, put an arrow facing up. Below the box, write 1s

Explanation:

8 0
3 years ago
____________ rays show areas where large quantities of energy are released.
sladkih [1.3K]

Answer:

Gamma

Explanation:

3 0
2 years ago
Summarize a paragraph of what you’ve learned about mile carnival
bezimeni [28]
Where is the paragraph that we are summarizing v
5 0
3 years ago
This type of radiation does not need a _________ to transfer heat. <br><br> A. Matter<br> B. Medium
ZanzabumX [31]

Answer:

The answer is Medium on UsaTestPrep

6 0
3 years ago
Explain how temperature and precipitation are affected by latitude and the sun's rays.
kramer
Latitude is the measurement of the distance of a location on the Earth from the equator. ... At the poles, the Sun's rays strike the Earth at an acute angle, this spreads the heat over a larger area. More heat is lost to the atmosphere as the rays travel a longer distance through the atmosphere.
3 0
3 years ago
Other questions:
  • Name a object and its material (matter)
    7·2 answers
  • Why is the inner core under more pressure than the outer core
    6·2 answers
  • in terms of amounts of energy and harmful radioactive waste produced , which of the following is the most accurate comparison of
    10·1 answer
  • What is the melting point of gallium?
    12·2 answers
  • Which state of matter expands when heated and is easy to compress? gas solid liquid
    7·1 answer
  • Give the formula for the compound formed when sulfur dioxide reacts with water.
    8·1 answer
  • Which project was designed to visit the moon? A. Gemini B. Mercury C. Apollo D. Skylab
    13·2 answers
  • Have a good Thanksgivingggggggggg<br><br><br><br><br> Freeeeeeeee points
    13·2 answers
  • What is the pH of a solution that has a [H+] = 0.010 mol/L?
    6·1 answer
  • 11. if the ph of a solution increases from 2.0 to 4.0, the h3o^ ion concentration o a decreases by a factor of 2. b. decreases b
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!