1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
6

Calculate the equilibrium constant k for the isomerization of glucose-1-phosphate to fructose-6-phosphate at 298 k. express your

answer numerically using two significant figures. hints
Chemistry
2 answers:
o-na [289]3 years ago
7 0

The equilibrium constant for isomerization reaction is \boxed{9.615}

Further Explanation:

The standard Gibbs free energy change in a reaction \left( {{{\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }}} \right) is the difference of sum of the standard free energies of formation of product molecules and sum of standard free energies of formation of reactant molecules at the standard conditions. The formula used to calculate the value of standard Gibbs free energy  change for a reaction \left( {{{\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }}} \right) is as follows:

\Delta\text{G}_{\text{rxn}}^{\circ}=\sum\text{n}\Delta\text{G}_{\text{f}(\text{products})}^{\circ}-\sum\text{m}\Delta\text{G}_{\text{f}(\text{reactants})}^{\circ}

Here, n is the stoichiometric coefficients of products, and m are the stoichiometric coefficients of reactants in a balanced chemical equation.

The formula to determine the relationship between change in standard Gibbs free energy \left( \Delta{\text{G}^{\circ}} \right) and equilibrium constant \left({\text{K}}\right) is given as follows:

{\Delta }}{{\text{G}}^{{^\circ }}} = - {\text{RTlnK}}       ......(1)

Here,

\Delta{\text{G}^{\circ} is the standard Gibbs free energy change.

{\text{R} is the gas constant.

{\text{T}} is the temperature in Kelvin.

{\text{K}} is the equilibrium constant.

The isomerization of glucose-1-phosphate to fructose-6-phosphate occurs in 2 steps:  

The reaction of step 1 is as follows:

{\text{glucose - 1 - phosphate}} \to {\text{glucose - 6 - phosphate}}

                                       ......(2)

\Delta{\text{G}^{\circ}_{1} for equation (2) is  - 7.28\;{\text{kJ/mol}}

The reaction of step 2 is as follows:

{\text{fructose - 6 - phosphate}} \to {\text{glucose - 6 - phosphate}}

                                                   ......(3)

\Delta{\text{G}^{\circ}_{2} for equation (3) is  - 1.67\;{\text{kJ/mol}}

Reverse the reaction of step 2.

{\text{glucose - 6 - phosphate}} \to {\text{frutcose - 6 - phosphate}}

                                                ......(4)

\Delta{\text{G}^{\circ}_{3} for equation (4) is + 1.67\;{\text{kJ/mol}}

Add equation (1) and (3) to get the final equation.

{\text{glucose - 1 - phosphate}} \to {\text{frutcose - 6 - phosphate}}

To calculate \Delta {\text{G}}_{{\text{rxn}}}^{^\circ }}, add \Delta{\text{G}^{\circ}_{1} and \Delta{\text{G}^{\circ}_{3} as follows:  

\Delta{\text{G}^{\circ}_{\text{rxn}}=\Delta{\text{G}^{\circ}_{1}+\Delta{\text{G}^{\circ}_{3}                       ......(5)

Substitute - 7.28\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ}_{1} and + 1.67\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ}_{3} in equation (5).

\begin{aligned}\Delta {\text{G}}_{{\text{rxn}}}^{{^\circ }} &=  - 7.28\;{\text{kJ/mol + }} + 1.67\;{\text{kJ/mol}}\\{\text{}}&= - 5.61\;{\text{kJ/mol}}\\\end{aligned}

For equilibrium constant (K), rearrange equation (1)

{\text{K}}={\text{e}}\frac{-\Delta{\text{G}}^{\circ}}{\text{RT}}    ......(6)

Substitute - 5.61\;{\text{kJ/mol}} for \Delta{\text{G}^{\circ},8.314\;{\text{J/mol}} \cdot {\text{K}} for R and 298\;{\text{K}} for T in equation (6)

\begin{aligned} {\text{K}}&= {{\text{e}}^{\frac{{ - \left( { - 5.61\;{\text{kJ/mol}}} \right)}}{{\left( {8.314\;{\text{J/mol}} \cdot {\text{K}}} \right)\left( {\frac{{{\text{1J}}}}{{1000{\text{kJ}}}}} \right)\left( {298\;{\text{K}}} \right)}}}}\\&= {{\text{e}}^{2.2634}}\\&= 9.615\\\end{aligned}

The equilibrium constant for the reaction is 9.615.

Learn more:

1. The change in standard gibbs free is for a reaction: brainly.com/question/10838453

2. Determination of the equilibrium constant for pure water: brainly.com/question/3467841

Answer details:

Grade: Senior Secondary School

Subject: Chemistry

Chapter: Chemical Equilibrium

Keywords: Standard Gibbs free energy, equilibrium, constant, glucose-1-phosphate and fructose-6-phosphate.

k0ka [10]3 years ago
6 0
We cannot solve this problem without using empirical data. These reactions have already been experimented by scientists. The standard Gibb's free energy, ΔG°, (occurring in standard temperature of 298 Kelvin) are already reported in various literature. These are the known ΔG° for the appropriate reactions.

<span>glucose-1-phosphate⟶glucose-6-phosphate          ΔG∘=−7.28 kJ/mol
fructose-6-phosphate⟶glucose-6-phosphate          ΔG∘=−1.67 kJ/mol
</span>
Therefore, the reaction is a two-step process wherein glucose-6-phosphate is the intermediate product.

glucose-1-phosphate⟶glucose-6-phosphate⟶fructose-6-phosphate 

In this case, you simply add the ΔG°. However, since we need the reverse of the second reaction to end up with the terminal product, fructose-6-phosphate, you'll have to take the opposite sign of ΔG°.

ΔG°,total = −7.28 kJ/mol  + 1.67 kJ/mol = -5.61 kJ/mol

Then, the equation to relate ΔG° to the equilibrium constant K is

ΔG° = -RTlnK, where R is the gas constant equal to 0.008317 kJ/mol-K.
-5.61 kJ./mol = -(0.008317 kJ/mol-K)(298 K)(lnK)
lnK = 2.2635
K = e^2.2635
K = 9.62


You might be interested in
What determines an element's chemical properties
Alik [6]
The three factors determine the chemical properties of an element:
<span><span>The number and arrangement of electrons in an atom
</span><span>The number of valence electrons
</span><span>The number and arrangement of electrons</span></span>
5 0
3 years ago
Read 2 more answers
The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion fo
Anna007 [38]

Answer:

NaCl: ionic, HF: hydrogen bond,  HCl: dipole dipole , F2: dispersion force

Explanation:

complete question is:

The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion forces. Consider the compounds below, and classify each by its predominant attractive or intermolecular force among atoms or molecules of the same type.Identify each of the following ( NaCl, HF, HCl, F2) as Ionic, H Bonding, Dipole or Dispersion.

3 0
3 years ago
Read 2 more answers
Pls pls pls pls pls pls pls pls pls pls pls help help help help help help help help help help
Gwar [14]

Answer:

Explanation:

The moon would fall and earth as well

6 0
3 years ago
How much does a gallon of water WEIGH?
elixir [45]
A gallon of water weighs 8.34 pounds
4 0
3 years ago
What is the [OH-] of a substance that has a pH of 11?
Deffense [45]

Answer:

0.001 M OH-

Explanation:

[OH-] = 10^-pOH, so

pOH + pH = 14 and 14 - pH = pOH

14 - 11 = 3

[OH⁻] = 10⁻³ ; [OH-] = 0.001 M OH-

6 0
3 years ago
Other questions:
  • At atmospheric pressure a balloon contains 2.00 l of nitrogen gas how would the volume change \
    7·1 answer
  • A 10.0 mL syringe contains 0.10 g of nitrogen gas at 0.0 degrees Celsius. What is the pressure inside the syringe?
    7·1 answer
  • 1. The mass of 6.45 x 1022 atoms C​
    8·1 answer
  • If a liquid has a density of 1200 g/l what is it’s density in charge/ml
    10·1 answer
  • Calculate ΔH (in kJ) for the process Hg2Br2(s) → 2 Hg(l) + Br2(l) from the following information.
    13·2 answers
  • Calculate the pH of a solution with [H₃O⁺] = 1 × 10¯⁴ M to the correct number of decimal places.
    12·1 answer
  • AIDS is one disease caused by a virus infection. The virus attacks immune system cells known as T cells.
    8·1 answer
  • The video states that in order to use the triangulation method needs a certain number of seismograph stations. How many stations
    13·1 answer
  • Can someone in here please answer there question for the love of god
    5·1 answer
  • If liquid carbon disulfide reacts with 450 mL of oxygen to produce the gases carbon dioxide and sulfur dioxide, what volume of e
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!