Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
The answer is B. This is because Sodium has 1 valence electron and Fluorine has 7 valence electrons. All elements want 8 valence electrons so they may be stale, like the noble gases are. Hope this helps.
1,516.31168 grams of Magnesium Hydroxide
Answer:
ΔH = - 272 kJ
Explanation:
We are going to use the fact that Hess law allows us to calculate the enthalpy change of a reaction no matter if the reaction takes place in one step or in several steps. To do this problem we wll add two times the first step to second step as follows:
N2(g) + 3H2(g) → 2NH3(g) ΔH=−92.kJ Multiplying by 2:
2N2(g) + 6H2(g) → 4NH3(g) ΔH=− 184 kK
plus
4NH3(g) + 5O2(g) → 4NO(g) +6H2O(g) ΔH=−905.kJ
__________________________________________________
2N2(g) + 6H2(g) + 5O2(g)→ 4NO(g) + 6H2O(g) ΔH = (-184 +(-905 )) kJ
ΔH = -1089 kJ
Notice how the intermediate NH3 cancels out.
As we can see this equation is for the formation of 4 mol NO, and we are asked to calculate the ΔH for the formation of one mol NO:
-1089 kJ/4 mol NO x 1 mol NO = -272 kJ (rounded to nearest kJ)