Part A
Free fall motion
h = 3.1 m
Equation: Vf = √(2gh) = √(2*9.8 m/s^2 * 3.1 m) = 7.8 m/s
That is the only part in the question.
Answer:
Explanation:
Height of building
H = 6m
Horizontal speed of first balloon
U1x = 2m/s
Second ballot is thrown straight downward at a speed of
U2y = 2m/s
Time each gallon hits the ground
Balloon 1.
Using equation of free fall
H = Uoy•t + ½gt²
Uox = 0 since the body does not have vertical component of velocity
6 = ½ × 9.8t²
6 = 4.9t²
t² = 6 / 4.9
t² = 1.224
t = √1.224
t = 1.11 seconds
For second balloon
H = Uoy•t + ½gt²
6 = 2t + ½ × 9.8t²
6 = 2t + 4.9t²
4.9t² + 2t —6 = 0
Using formula method to solve the quadratic equation
Check attachment
From the solution we see that,
t = 0.9211 and t = -1.329
We will discard the negative value of time since time can't be negative here
So the second balloon get to the ground after t ≈ 0.92 seconds
Conclusion
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
a) 0.31 rad/s
b) 100 J
c) 6.67 W
Explanation:
(a) the force would generate a torque of:

According to Newton 2nd law, the angular acceleration would be

It starts from rest, then after 15s it would achieve a speed of

(b) The distance angle swept by it is:

Hence the work by the child

c) Average power to work per time unit

Answer:
B
Explanation:
V=IR I= curren V=volt R=resistor
8=2.R 8/2=R R=4