Answer:
U = -3978.8 J
Explanation:
The work of the gravitational force U just depends of the heigth and is calculated as:
U = -mgh
Where m is the mass, g is the gravitational acceleration and h the alture.
for calculate the alture we will use the following equation:
h = L-Lcos(θ)
Where L is the large of the rope and θ is the angle.
Replacing data:
h = 12.2-12.2cos(58.4)
h = 5.8 m
Finally U is equal to:
U = -70(9.8)(5.8)
U = -3,978.8 J
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
A force is a push or pull acting upon an object as a result of its interaction with another object. There are a variety of types of forces. a variety of force types were placed into two broad category headings on the basis of whether the force resulted from the contact or non-contact of the two interacting objects.
Contact Forces
Action-at-a-Distance Forces
Frictional Force
Gravitational Force
Tensional Force
Electrical Force
Normal Force
Magnetic Force
Air Resistance Force
Applied Force
Spring Force
These are types of individual forces
Applied Force
Gravitational Force
Normal Force
Frictional Force
Air Resistance Force
Tensional Force
Spring Force
Answer:
0.010 m
Explanation:
So the equation for a pendulum period is:
where L is the length of the pendulum. In this case I'll use the approximation of pi as 3.14, and g=9.8 m\s. So given that it oscillates once every 1.99 seconds. you have the equation:

Evaluate the multiplication in front

Divide both sides by 6.28

Square both sides

Multiply both sides by m/s^2 (the s^2 will cancel out)
Now now let's find the length when it's two seconds

Divide both sides by 6.28

Square both sides

Multiply both sides by 9.8 m/s^2 (s^2 will cancel out)

So to find the difference you simply subtract
0.984 - 0.994 = 0.010 m