This is what I got:
Net force in the Y direction:
ΣFy = T1 - T2
F = ma
ma = T1 - T2
Isolate for T2
ma - T1 = -T2
Multiply by -1
T1 - ma = T2
100 - (3)(2) = T2
100 - 6 = T2
T2 = 94 N
The force applied to lift the crate is 171 N
Explanation:
The lever works on the principle of equilibrium of moments, so we can write:

where
is the force in input
is the arm of the input force
is the output force
is the arm of the output force
For the lever in this problem, we have:


(force applied)
Solving the equation for
, we find the force applied to lift the crate:

Learn more about levers:
brainly.com/question/5352966
#LearnwithBrainly
Whenever an object is falling, its potential energy
is decreasing and its kinetic energy is increasing.
Olivia's potential energy is decreasing and her kinetic energy
is increasing as she moves toward the right side of the picture,
all the way from W, through X, to the bottom of the arc.
You may know linear momentum is given by
P= mass.velocity.
Initially car is moving with some velocity so you know initial momentum of the car. Finally it comes to rest i.e final momentum of the car is 0. According to Newton's second law : Force = change in momentum /time. Applying this you'll get answer as 642840N. Hope it helped you. Revert back to me if you have any questions. Please check out the calculation it might be wrong!
D. Heat energy will be transferred within the system and if left long enough, there will be enough transferred energy to make both of them the same temperature.