Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
The percentage of energy available to each organism is always 10 percent .
A. Angular momentum is always conserved would be the correct answer.
This is because like linear momentum (mvmv), angular momentum (r×mvr×mv) is a conserved quantity, where rr is the vector from the center of rotation. For a skater holding a static pose, for each particle making up her body, the contribution in magnitude to the total angular momentum is given by mirivimirivi. Thus bringing in her arms reduces riri for those particles. In order to conserve angular momentum, there is then an increase in the angular velocity.
hope this helps!
Answer:
The frequency , speed and wavelength of an electromagnetic wave are related by the formula
Speed = frequency x wavelength
frequency = speed / wavelength
substituting the values
frequency = 3 x #10 ^8# m /s / 1 x #10^15# m
= 3 x #10^-7# /s
Answer:
(a) 
(b) neither increasing or decreasing
(c) opposite to the flow of charge carriers
Explanation:
The current through an inductor of inductance L is given by:
(1)
(a) The induced emf is given by the following formula
(2)
You derivative the expression (1) in the expression (2):

(b) At t=0 the current is zero
(c) At t = 0 the emf is:

w, L and Imax have positive values, then the emf is negative. Hence, the induced emf is opposite to the flow of the charge carriers.
(d) read the text carefully