Answer:
2048.63 N
Explanation:
Force: The product of mass and the acceleration of a body. The S.I unit of Force is Newton(N).
From the question
P = F×V.................... Equation 1
Where P = power generated by the car, F = Total resistive force acting on the car, V = Velocity of the car.
make F the subject of the equation
F = P/V................ Equation 2
Given: P = 75.0 hp = (75×745.7) = 55927.5 W, V = 27.3 m/s
Substitute into equation 2
F = 55927.5/27.3
F = 2048.63 N
Hence the total resistive force acting on the car = 2048.63 N
<span>Kirchhoff's laws apply to AC circuits to either two cases: instantaneousneous values of currents and voltages or to complex values of currents and voltages. However, this never applies to: rms values of currents and voltages. Kirchoff's law relates to the current, voltage and resistance to multiple nodes</span>
Answer:
Atomic size
Explanation:
In the periodic table , atomic size is indirectly proportional to the effective nuclear charge .the atomic size reduces from left to right across the table. This is because electrons are added to the same shell.
Answer:
A) ω = 6v/19L
B) K2/K1 = 3/19
Explanation:
Mr = Mass of rod
Mb = Mass of bullet = Mr/4
Ir = (1/3)(Mr)L²
Ib = MbRb²
Radius of rotation of bullet Rb = L/2
A) From conservation of angular momentum,
L1 = L2
(Mb)v(L/2) = (Ir+ Ib)ω2
Where Ir is moment of inertia of rod while Ib is moment of inertia of bullet.
(Mr/4)(vL/2) = [(1/3)(Mr)L² + (Mr/4)(L/2)²]ω2
(MrvL/8) = [((Mr)L²/3) + (MrL²/16)]ω2
Divide each term by Mr;
vL/8 = (L²/3 + L²/16)ω2
vL/8 = (19L²/48)ω2
Divide both sides by L to obtain;
v/8 = (19L/48)ω2
Thus;
ω2 = 48v/(19x8L) = 6v/19L
B) K1 = K1b + K1r
K1 = (1/2)(Mb)v² + Ir(w1²)
= (1/2)(Mr/4)v² + (1/3)(Mr)L²(0²)
= (1/8)(Mr)v²
K2 = (1/2)(Isys)(ω2²)
I(sys) is (Ir+ Ib). This gives us;
Isys = (19L²Mr/48)
K2 =(1/2)(19L²Mr/48)(6v/19L)²
= (1/2)(36v²Mr/(48x19)) = 3v²Mr/152
Thus, the ratio, K2/K1 =
[3v²Mr/152] / (1/8)(Mr)v² = 24/152 = 3/19
Answer:
v = 4374 Km/h
Explanation:
Given that,
Mass of the smaller object, m = 2 Kg
Mass of the bigger object, M = 1500 Kg
Velocity of the bigger object, V = 1.62 m/s
Velocity of the smaller object, v = ?
The product of its mass and velocity of a body is equal to its linear momentum. It is given by the formula
p = mv Kg m/s
To find the momentum of the bigger object, substitute M and V in the above equation
p = 1500 Kg x 1.62 m/s
= 2430 Kg m/s
The velocity imparted to the small body to attain this momentum is given by the relation
v = p/m m/s
= 2430 Kg m/s / 2 Kg
= 1215 m/s
By converting the velocity to Km/h
v = 4374 km/h
Hence, the velocity of the 2 Kg object is v = 4374 km/h