Answer:
Explanation:
We know that the formula for acceleration is given by:
, where v = Final velocity
u= Initial velocity
Given : The driver of a car traveling 110 km/h slams on the brakes so that the car undergoes a constant acceleration.
i.e. u= 110 km/h
[∵ 1 km= 100 meters and 1 hour = 3600 seconds]
v= 0 m/s ( At brake , final velocity becomes 0)
t=4.5 seconds
Substitute all the values in the formula , we get

Hence, the average acceleration of the car during braking is
.
Answer:
If the Kelvin temperature of a gas is increased, the volume of the gas increases. This can be understood by imagining the particles of gas in the container moving with a greater energy when the temperature is increased.
Explanation:
If you heat a gas you give the molecules more energy so they move faster. This means more impacts on the walls of the container and an increase in the pressure. Conversely if you cool the molecules down they will slow and the pressure will be decreased.
To calculate a change in pressure or temperature using Gay Lussac's Law.
Answer:
dx/Dt x B . x =0
Explanation:
Let's calculate the work and the magnetic force, the expression for magnetic force is
F = qv x B
Bold indicate vector quantities, the expression for the job is
W = F. X
Let's replace in this equation
W = q v x B . X
The definition of speed is
v = dX / dt
With what work is left
W = q dX / dt x B . X
As we can see the vector product gives us a vector perpendicular to dX and its scalar product by X of zero
Second part
The speed a vector and although the magnitude is constant the change of direction implies a change in the speed.
Let's calculate the magnitudes of speed (speed)
F = qv B sin θ
F = ma
q v B sin θ = ma
a = qvB / m senT
This acceleration is perpendicular to the magnetic field and the velocity, so it does not change if magnitude but its direction, it is directed to the center of the circle.
| v | = q vB/m sin θ
Answer:
<u>because of the doppler effect</u>
Explanation:
<em>Remember</em>, the doppler effect refers to the changes in sound (frequency of sound) observed by a person who is in a position relative to the wave source.
In this example, we notice as the train comes closer to the boy, the sound becomes louder also increasing the pitch slightly, the doppler effect sets in when the train passes the boy because the boy notices a decrease in the pitch of the moving train.
We learn from the change in the observed sound of the train that the frequency of the sound is determined by the distance of the observer from the wave source.
In other words, the closer the source of the sound to the observer; the faster it travels to the observer, however, the farther it is; the lesser it is; the greater the sound heard.