<span>B. the He nucleus C.the He electrons D.the He quarks</span>
The answer would be balanced
Answer:
1. final pressure = 0.259atm
2. 196.84mmHg
Explanation:
Using Boyle's law of equation
P1V1 = P2V2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (mL)
V2 = final volume (mL)
According to the information given in this question:
V1 = 105mL
V2 = 352mL
P1 = 0.871atm
P2 = ?
Using P1V1 = P2V2
P2 = P1V1/V2
P2 = 0.871 × 105/352
P2 = 91.455/352
P2 = 0.2598
P2 = 0.259atm
To convert 0.259atm of the gas into mmHg, we multiply the value in atm by 760.
Hence, 0.259 × 760
= 196.84mmHg
Answer:
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Explanation:
There are many ways to balance a chemical equation. In this case, I will show you the algebraic method:
The first step is assign a letter to each compound:
a Fe₂O₃ + b CO → c Fe + d CO₂
Then, you must write the balance equations for each atom, thus:
<em>Fe: 2a = c</em>
<em>C: b = d</em>
<em>O: 3a + b = 2d</em>
The last step is assign a value to a letter. I, for example, will say that <em>a is 1, </em>and then find the values for the others letters, thus:
<em>Fe: 2a = c </em>if <em>a=1; c=2</em>
<em>O: 3a + b = 2d </em>if <em>a=1 → 3+b = 2d</em>
As b = d → <em>3+d = 2d; 3 = 2d - d; </em>3=d and 3=b
Thus, the balanced equation is:
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
I hope it helps!