<span> 52.0ml of 0.35M CH3COOH : 0.052 L(0.35M) = .0182 mol of CH3COOH.
</span>
<span>31.0ml of 0.40M NaOH : .031 L(0.40M) = .0124 mol of NaOH.
</span>
<span>After the reaction, .0124 Mol CH3COO- is generated and .058 mol CH3COOH is left un-reacted. The concentration would be 12.4/V and 5.8/V, respectively. Therefore:
</span>
<span>pH = -log([H+]) = -log(Ka*[CH3COOH]/[CH3COO-]) </span>
<span>= -log(1.8x10^-5*5.8/12.4) = 5.07</span>
<h3>Answer:</h3>
Excess Reagent = NBr₃
<h3>Solution:</h3>
The Balance Chemical Equation for the reaction of NBr₃ and NaOH is as follow,
2 NBr₃ + 3 NaOH → N₂ + 3 NaBr + 3 HBrO
Calculating the Limiting Reagent,
According to Balance equation,
2 moles NBr₃ reacts with = 3 moles of NaOH
So,
40 moles of NBr₃ will react with = X moles of NaOH
Solving for X,
X = (40 mol × 3 mol) ÷ 2 mol
X = 60 mol of NaOH
It means 40 moles of NBr₃ requires 60 moles of NaOH, while we are provided with 48 moles of NaOH which is Limited. Therefore, NaOH is the limiting reagent and will control the yield of products. And NBr₃ is in excess as some of it is left due to complete consumption of NaOH.
Answer:
Idk if this is right but i hope it helps... sorry if it's wrong
Explanation:
Answer:
Element Atomic Number Atomic Mass
Nickel 27 58.6934
Cobalt 28 58.9332
Copper 29 63.546
Zinc 30 65.39
Explanation:
Answer:
The Solar System moves through the galaxy with about a 60° angle between the galactic plane and the planetary orbital plane. The Sun appears to move up-and-down and in-and-out with respect to the rest of the galaxy as it revolves around the Milky Way
Explanation:
Hope you like it