The s orbitals are not symmetrical in shape is a FALSE statement.
An s orbital is so symmetric, more specifically spherically symmetric that it looks the same from all directions.
- The atomic orbitals in the atoms of elements differ in shape.
In essence, the electrons they describe have varying probability distributions around the nucleus. The spherical symmetry of s orbitals is evident in the fact that all orbitals of a given shell in the hydrogen atom have the same energy.
- All s orbitals are spherically symmetrical. Put simply, an electron that occupies an s orbital can be found with the same probability at any orientation (at a distance) from the nucleus.
The s orbitals are therefore represented by a spherical boundary surface which is a surface which captures a high proportion of the electron density.
Read more:
brainly.com/question/5087295
The masses of the objects and the distance between them
-hope it helps
One of the major events is Volcanos etc...
Answer:
3.69 g
Explanation:
Given that:
The mass m = 325 g
The change in temperature ΔT = ( 1540 - 165)° C
= 1375 ° C
Heat capacity
= 0.490 J/g°C
The amount of heat required:
q = mcΔT
q = 325 × 0.490 × 1375
q = 218968.75 J
q = 218.97 kJ
The equation for the reaction is expressed as:

Then,
1 mole of the ethyne is equal to 26 g of ethyne required for 1544 kJ heat.
Thus, for 218.97 kJ, the amount of ethyne gas required will be:

= 3.69 g
Explanation:

The maximum wavelength of light that can cause this reaction is 420 nm.
a) The wavelength given lies in the range of visible light range that is from 400 nano meters to 700 nano meters.
The light with wavelength of 420 nm is found in the range of visible light.
b)The maximum strength of a bond :

where,
E = energy of photon = Energy required to break single molecule of nitrogen dioxide
h = Planck's constant = 
c = speed of light = 
= wavelength = 


Energy required to break 1 mole of nitrogen dioxide molecules:


(1 J = 0.001 kJ )
285.13 is the maximum strength of a bond, in kJ/mol, that can be broken by absorption of a photon of 420-nm light.
c) the photodissociation reaction showing Lewis-dot structures is given in an image attached.