Firstly we need to determine the partial pressure of O2:

We will now use the Henry's Law equation to determine the solubility of the gas:

Answer: Solubility is 2.7x10^-3 M
Answer: A decomposition reaction occurs when one reactant breaks down into two or more products.
Mark me as brainilist pls
<span>The correct answer is A, the ligt-dependent reactions. These reactions are responsible for the production of glucose molecules, by the utilization of carbon dioxide, and water along with the sunlight. Glucose is then broken down during resiration process, for the production of ATP in mitochondria.</span><span />
Answer: 17) d. 
18. c. The empirical formula of a compound can be twice the molecular formula.
Explanation:
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
To calculate the molecular formula, we need to find the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

The empirical mass can be calculated from empirical formula and molar mass must be known.
17. Thus the empirical formula of
should be 
18. The molecular formula will either be same as empirical formula or is a whole number multiple of empirical formula. Thus the empirical formula of a compound can never be twice the molecular formula.
Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.