Answer:
Explanation:
Given:
Tooth Number, N = 24
Diametral pitch pd = 12
pitch diameter, d = N/pd = 24/12 = 2in
circular pitch, pc = π/pd = 3.142/12 = 0.2618in
Addendum, a = 1/pd = 1/12 =0.08333in
Dedendum, b = 1.25/pd = 0.10417in
Tooth thickness, t = 0.5pc = 0,5 * 0.2618 = 0.1309in
Clearance, c = 0.25/pd = 0.25/12 = 0.02083in
It is habahi Yw with yuuuuuy I am a little more confused about
Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in
Answer:
Amount of air left in the cylinder=m
=0.357 Kg
The amount of heat transfer=Q=0
Explanation:
Given
Initial pressure=P1=300 KPa
Initial volume=V1=0.2
Initial temperature=T
=20 C
Final Volume=
=0.1 
Using gas equation

m1==(300*0.2)/(.287*293)
m1=0.714 Kg
Similarly
m2=(P2*V2)/R*T2
m2=(300*0.1)/(0.287*293)
m2=0.357 Kg
Now calculate mass of air left,where me is the mass of air left.
me=m2-m1
me=0.715-0.357
mass of air left=me=0.357 Kg
To find heat transfer we need to apply energy balance equation.

Where me=m1-m2
And as the temperature remains constant,hence the enthalpy also remains constant.
h1=h2=he=h
Q=(me-(m1-m2))*h
me=m1-me
Thus heat transfer=Q=0