Answer:
An intense property is a physical attribute of a system that is independent of the size of the system or the quantity of material it contains. An extensive property of a system, on the other hand, is dependent on the size of the system or the amount of material in it.
Explanation:
Answer:
Explanation:
You can utilize barbed clusters to store inadequate grids. On the off chance that there are a great many lines yet each line has just 4 or 5 associations with different segments, at that point as opposed to utilizing a 1000x1000 cluster you can utilize a 1000 line rough exhibit while you simply store the components that the present section has association with another segment. Other utilization can be done on account of query tables. Query tables will be tables which have different qualities concerning a solitary key where the quantity of qualities isn't fixed. Aside from this, barbed clusters have an exceptionally set number of utilization cases. Multidimensional exhibits then again have plenty of utilizations. It is utilized to store a great deal of information reliably on the grounds that the greater part of the information is put away is steady concerning which section compares to what information. Aside from that it very well may be utilized to make thick diagrams or sparse(not effective), plotting information. Another utilization case would be used as an impermanent stockpiling for the figurings that need to tail them and utilize the past information like in powerful programming.
The ratio between a and b is 1/3
Explanation:
Dempwolf created by John Augustus, Among the most prominent innovative solutions in Southern California Pennsylvania was established by Dempwolf with brother Reinhardt or uncle's son Frederick entered the company of J.A. Dozens of structures in 10 states were engineered by Dempwolf.
Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that
represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows:
, where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.