1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
14

In normal operation, a paper mill generates excess steam at 20 bar and 400◦C. It is planned to use this steam as the feed to a t

urbine to generate electricity for the mill. There are 5000 kg/hr of steam available, and it is planned that the exit pressure of the steam will be 2 bar. Assuming that the turbine is well insulated, what is the maximum power that can be generated by the turbine?
Engineering
1 answer:
Keith_Richards [23]3 years ago
6 0

Answer:

The maximum power that can be generated is 127.788 kW

Explanation:

Using the steam table

Enthalpy at 20 bar = 2799 kJ/kg

Enthalpy at 2 bar = 2707 kJ/kg

Change in enthalpy = 2799 - 2707 = 92 kJ/kg

Mass flow rate of steam = 5000 kg/hr = 5000 kJ/hr × 1 hr/3600 s = 1.389 kg/s

Maximum power generated = change in enthalpy × mass flow rate = 92 kJ/kg × 1.389 kg/s = 127.788 kJ/s = 127.788 kW

You might be interested in
Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
sergeinik [125]

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

8 0
2 years ago
Please help, Artificial Intelligence class test
MrRissso [65]

The answer to your quesition is b

4 0
2 years ago
Drag each item to show if it is an element or not an element.
Flauer [41]

Answer:

CARBON

Explanation:

HOPE THIS HELPS SORRY FOR CAPS

5 0
3 years ago
Conclusion. What process is responsible for the bubbling action of the organism? What is your evidence?
noname [10]

Answer:

Explanation:

Hands-on Activity Bubbling Plants Experiment to Quantify Photosynthesis ... After running the experiment, students pool their data to get a large sample ... Explain that photosynthesis is a process that plants use to convert light ... Describe a simple experiment that provides indirect evidence that photosynthesis is occurring.

Through photosynthesis, certain organisms convert solar energy (sunlight) into ... of our planet continuously and is transferred from one organism to another. Therefore, directly or indirectly, the process of photosynthesis provides most of the energy ... Biology in Action ... Chlorophyll is responsible for the green color of plants.Photosynthetic organisms capture energy from the sun and matter from the air to ... oxygen produced during photosynthesis makes leaf bits float like bubbles in water. ... their ability to carry out photosynthesis, the biochemical process of capturing ... this air is forced out and replaced with solution, causing the leaves to sink.

6 0
2 years ago
When subject to an unknown torque, the shear stress in a 2 mm thick rectangular tube of dimension 100 mm x 200 mm was found to b
laila [671]

Answer:

The shear stress will be 80 MPa

Explanation:

Here we have;

τ = (T·r)/J

For rectangular tube, we have;

Average shear stress given as follows;

Where;

\tau_{ave} = \frac{T}{2tA_{m}}

A_m = 100 mm × 200 mm = 20000 mm² = 0.02 m²

t = Thickness of the shaft in question = 2 mm = 0.002 m

T = Applied torque

Therefore, 50 MPa = T/(2×0.002×0.02)

T = 50 MPa × 0.00008 m³ = 4000 N·m

Where the dimension is 50 mm × 250 mm, which is 0.05 m × 0.25 m

Therefore, A_m = 0.05 m × 0.25 m = 0.0125 m².

Therefore, from the following average shear stress formula, we have;

\tau_{ave} = \frac{T}{2tA_{m}}

Plugging in then values, gives;

\tau_{ave} = \frac{4000}{2\times 0.002 \times 0.0125} = 80,000,000 Pa

The shear stress will be 80,000,000 Pa or 80 MPa.

7 0
3 years ago
Other questions:
  • Select the properties and typical applications for the high carbon steels.
    12·1 answer
  • Consider flow in between two parallel plates located a distance H from each other. Fluid flow is driven by the bottom plate movi
    15·1 answer
  • Are ocean currents always cold
    10·1 answer
  • Air in a 10 ft3 cylinder is initially at a pressure of 10 atm and a temperature of 330 K. The cylinder is to be emptied by openi
    10·2 answers
  • What's the best way to find the load capacity of a crane? Select the best option. Call the manufacturer Ask co-workers Look at t
    8·1 answer
  • Help thank you <3 :DDD
    13·1 answer
  • Do you know who Candice is
    8·2 answers
  • The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c
    9·1 answer
  • Which of the following maintenance items helps to ensure the vehicles engine lasts as long as possible?
    6·1 answer
  • 40 POINTS IF ANSERED WITHIN 10 MINS
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!