The Law of conservation of mass states that option C: matter is neither created nor destroyed.
<h3>What is the law of conservation of matter?</h3>
Physical and chemical changes can cause matter to transform into different forms, but no matter what happens, matter is always conserved. There is no creation or destruction of matter; the amount of matter is the same before and after the transformation.
The principle of matter conservation. argues that matter cannot be generated or destroyed during a chemical reaction. The same number of atoms exist before and after the alterations even though the matter may shift from one form to another. reactant.
Therefore, According to the principle of mass conservation, neither chemical processes nor physical changes can create or destroy mass in an isolated system. The mass of the products and reactants of a chemical reaction must be equal, in accordance with the law of conservation of mass.
Learn more about matter from
brainly.com/question/3998772
#SPJ1
See full question below
1. Multiple-choice
Q.
Conservation of matter article questions
Law of conservation of mass states that
answer choices
matter is created
matter is destroyed
matter is neither created nor destroyed
matter does not change
Answer:
because im trynna get these 5 points
Explanation:
mklnk.m
Answer:
a) ammonium ion
b) amide ion
Explanation:
The order of decreasing bond angles of the three nitrogen species; ammonium ion, ammonia and amide ion is NH4+ >NH3> NH2-. Next we need to rationalize this order of decreasing bond angles from the valence shell electron pair repulsion (VSEPR) theory perspective.
First we must realize that all three nitrogen species contain a central sp3 hybridized carbon atom. This means that a tetrahedral geometry is ideally expected. Recall that the presence of lone pairs distorts molecular structures from the expected geometry based on VSEPR theory.
The amide ion contains two lone pairs of electrons. Remember that the presence of lone pairs causes greater repulsion than bond pairs on the outermost shell of the central atom. Hence, the amide ion has the least H-N-H bond angle of about 105°.
The ammonia molecule contains one lone pair, the repulsion caused by one lone pair is definitely bless than that caused by two lone pairs of electrons hence the bond angle of the H-N-H bond in ammonia is 107°.
The ammonium ion contains four bond pairs and no lone pair of electrons on the outermost nitrogen atom. Hence we expect a perfect tetrahedron with bond angle of 109°.
Answer:
Mean
Explanation:
The mean of a series of measurements is calculated when a<em>ll the measurements are added up and then divided by the number of measurements taken</em>, as follows:
- Sum of Measurements = 20.73 + 20.76 + 20.68 + 20.75 = 82.92
As<u> there are 4 measurements</u>, the mean is:
Answer: 207.217 amu
Work:
203.973 amu *(0.014) = 2.855 amu
205.974 amu *(0.241) = 49.639 amu
206.976 amu *(0.221) = 45.741 amu
207.977 amu *(0.524) = 108.979 amu
2.855 + 49.639 + 45.741 + 108.979 = <em><u>207.217amu</u></em>
Explanation: