Answer:
Explanation:
the chemical equilibrium constant can be easily calculated since the concentrations at equilibrium are given.the calculation shows the value of Kc for the reversible reaction and forward reaction
Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB
corrected question: A chemist adds 135mL of a 0.21M zinc nitrate solution to a reaction flask. Calculate the mass in grams of zinc nitrate the chemist has added to the flask. Round your answer to significant digits.
Answer:
5.37g
Explanation:
0.21M means ; 0.21mol/dm³
1dm³=1L , so we can say 0.21mol/L
if 0.21mol of Zinc nitrate is contained in 1L of water
x will be contained in 135mL of water
x= 0.21*135*10³/1
=0.02835moles
number of moles= mass/ molar mass
mass= number of moles *molar mas
molar mass of Zn(NO₃)₂=189.36 g/mol
mass= 0.02835 *189.36
mass=5.37g
Density = mass / volume
Mass = 5 kg
Volume = 50 cm³
d = 5 / 50
d = 0,1 kg/cm³