Answer:
114 kPa
Explanation:
By Bernoulli's equation when a fluid flows steadily through a pipe:
P + ρ*g*y + v² = constant in the pipe, where P is the pressure, ρ is the density of the fluid, g is the gravity acceleration (9.8 m/s²), y is the high, and v the velocity.
By the continuity equation, the liquid flow must be constant in the pipe, and then:
A1*v1 = A2*v2
Where A is the area, v is the velocity, 1 is the point 1, and 2 the point 2 in the pipe. The are is the circle area: π*(d/2)². So:
π*(0.105/2)²*9.91 = π*(0.167/2)²*v2
0.007v2 = 0.027
v2 = 3.9 m/s
Then:
P1 + ρ*g*y1 + v1² = P2 + ρ*g*y2 + v2²
ρ*g*y1 - ρ*g*y2 + v1² - v2² = P2 - P1
ρ*g*Δy + v1² - v2² = ΔP
ΔP = 1290*9.8*9.01 + 9.91² - 3.9²
ΔP = 113,987.42 Pa
ΔP = 114 kPa
Answer:
Explained below.
Explanation:
First of all, the orbital path of electron is mostly parabolic in electric field.
In an electric field, electrons behave very similar to a projectile. Thus, Electrons have a parabolic path in an electric field simply because the speed of the electrons in a direction which is perpendicular to the electric field is constant since there is no force. Therefore, there will be no acceleration along that perpendicular direction. However there will be an acceleration that is constant in the direction of the electric field which makes it act in a similar manner to a projectile under gravity.
True !! size dependent properties state is only one of the many physical properties of matter some physical properties such as massive value depending on the size or the amount measures of these properties very depending on how much matter is in a sample.
Answer:
Explanation:
im not 100% sure but maybe d
The solubility of a substance tells us the amount of solute that is capable of dissolving a given amount of solvent at a given temperature. We speak that a solution is.
Now, if the amount is less than the statement says, it will be an unsaturated solution.
When the amount is greater, the solution is supersaturated and a precipitate of solute will form in the solution.
According to what has been explained, the solution described by the statement is an unsaturated solution.
Answer: Unsaturated