Answer:
3 x^2 - x + -1
Step-by-step explanation:
Simplify the following:
-(4 x - 2 x^2 - 3) + x^2 + 3 x - 4
Factor -1 out of -2 x^2 + 4 x - 3:
--(2 x^2 - 4 x + 3) + x^2 + 3 x - 4
(-1)^2 = 1:
2 x^2 - 4 x + 3 + x^2 + 3 x - 4
Grouping like terms, 2 x^2 + x^2 + 3 x - 4 x - 4 + 3 = (x^2 + 2 x^2) + (3 x - 4 x) + (-4 + 3):
(x^2 + 2 x^2) + (3 x - 4 x) + (-4 + 3)
x^2 + 2 x^2 = 3 x^2:
3 x^2 + (3 x - 4 x) + (-4 + 3)
3 x - 4 x = -x:
3 x^2 + -x + (-4 + 3)
3 - 4 = -1:
Answer: 3 x^2 - x + -1
Answer:
The better bar to buy is the Nutty Crunch
Step-by-step explanation:
4.74 / 6 = 0.79 per bar
7.80 / 10 = 0.78 per bar
:)
1) The two lines are <em>perpendicular</em>. (Correct choice: True)
2) The slope of the <em>linear</em> function is $ 10 per hour. (Correct choice: A)
<h3>How to analyze and interpret linear functions</h3>
Herein we must understand and analyze <em>linear</em> functions to find all required information from two exercises. The first exercise asks us to prove if the two lines seen are <em>perpendicular</em> and the second exercise asks us to calculate and interpret the slope of the <em>linear</em> function. Now we proceed to resolve each point:
Exercise 1
If the two lines are perpendicular, then the product of the two slopes must be equal to - 1. The value of slope can be found by <em>secant line</em> formula:
m · m' = - 1
[(1 - 2) / [0 - (-1)]] · [[-1 - (- 2)] / (1 - 0)]
(- 1 / 1) · (1 / 1)
- 1
The two lines are <em>perpendicular</em>. (Correct choice: True)
Exercise 2
In this part we must determine the rate of change of wage in time, in monetary units per time, which can be found by again by the <em>secant line</em> formula:
m = ($ 10 - $ 0) / (1 h - 0 h)
m = $ 10 per hour
The slope of the <em>linear</em> function is $ 10 per hour. (Correct choice: A)
To learn more on linear functions: brainly.com/question/21107621
#SPJ1
Answer:
1 / 8
Step-by-step explanation:
I'm assuming that is meant to be 3/4 and 1/6...
Area = Length * Width
A = 3/4 * 1/6
A = 3 / 24
simplify the fraction to get your answer
Answer:
the answer is function 1 has the larger max. at (4,1)
Step-by-step explanation:
draw function 2 : the vertex is (1,-2)
the vertex of function 1 is (4,1)