Answer:
The answer will be Ligand A with a dissociation constant (Kd) of
M
Explanation:
When the dissociation constant in the ligand is small (in order of nano) (
) it will be more tied. Due to a dissociation constant measures how much a ligand can be able to be separated from the protein so if the number is small it means that the ligand is highly binded to the protein.
On the other hand, the occupancy percentage of the ligand does not imply binding. Conversely, a High-affinity ligand binding with the proteins implies that a relatively low concentration of a ligand is adequate to occupy the maximum ligand-binding site.
Answer:
0.64 L
Explanation:
Recall that
n= CV where n=m/M
Hence:
m/M= CV
m= given mass of solute =152g
M= molar mass of solute
C= concentration of solute in molL-1 = 1.5M
V= volume of solute =????
Molar mass of potassium permanganate= 158.034 g/mol
Thus;
152 g/158.034 gmol-1= 1.5M × V
V= 0.96/1.5
V= 0.64 L
A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.
Answer:
The <u>equilibrium constant</u> is:

Explanation:
The correct equation is:
Thus, with the equilibrium concentrations you can calculate the equilibrium constant, Kc.
The equation for the equilibrium constant is:
![k_c=\dfrac{[NH_3]^2}{[N_2]\cdot [H_2]^3}](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5Ccdot%20%5BH_2%5D%5E3%7D)
Substituting:

