Answer:
a) volume of ammonium iodide required =349 mL
b) the moles of lead iodide formed = 0.0436 mol
Explanation:
The reaction is:
It shows that one mole of lead nitrate will react with two moles of ammonium iodide to give one mole of lead iodide.
Let us calculate the moles of lead nitrate taken in the solution.
Moles=molarityX volume (L)
Moles of lead nitrate = 0.360 X 0.121 =0.0436 mol
the moles of ammonium iodide required = 2 X0.0436 = 0.0872 mol
The volume of ammonium iodide required will be:
the moles of lead iodide formed = moles of lead nitrate taken = 0.0436 mol
Answer:
Both the initial and final substances are composed of atoms because all matter is composed of atoms. According to the law of conservation of matter, matter is neither created nor destroyed, so we must have the same number and type of atoms after the chemical change as were present before the chemical change.
Explanation:
The atoms that make up your body were produced inside a star and have ... I read once that atoms get recycled so much through the planet that each of ... from William Shakespeare, but I do know this: All of us come from stars. ... If you have gold fillings in your teeth, those atoms came from a star explosion.
Answer:
No, there is no evidence that the manufacturer has a problem with underfilled or overfilled bottles, due that according our results we cannot reject the null hypothesis.
Explanation:
according to this exercise we have the following:
σ^2 =< 0.01 (null hypothesis)
σ^2 > 0.01 (alternative hypothesis)
To solve we can use the chi-square statistical test. To reject or not the hypothesis, we have that the rejection region X^2 > 30.14
Thus:
X^2 = ((n-1) * s^2)/σ^2 = ((20-1)*0.0153)/0.01 = 29.1
Since 29.1 < 30.14, we cannot reject the null hypothesis.
Answer:
D. Nuclei with small masses combine to form nuclei with larger masses.
B. A small amount of mass in the nuclei that combine is converted to energy
Explanation:
A nuclear fusion, in contrary to fission, is the process by which the nuclei of two atoms combine to form a much larger atom with a large nuclei. Likewise, during a fusion reaction, a large amount of energy is released from the small amount of mass in the nuclei (two) that combines.
According to this question, the following are true of a fusion reaction:
- Nuclei with small masses combine to form nuclei with larger masses.
- A small amount of mass in the nuclei that combine is converted to enormous energy.
The law of conservation of matter basically states that matter can’t be created or destroyed, only changed in form, so you can rule out any option that mentions destroying or creating matter. That leaves only option A. Atoms cannot be created or destroyed by chemical reactions.