Answer:
Products
Explanation:
During a chemical reaction, there are the reactants (left side), and the products (right side).
<span>As temperature increases, the amount of solute that a solvent can dissolve increases.</span>
<span>Answer: False
</span>
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Answer:
B) 12
Explanation:
Given parameters:
Initial volume = 3L
Initial pressure = 4atm
Final pressure = 6atm
Unknown:
Final volume = ?
Solution:
To solve this problem, we apply Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes if the temperature is constant".
P₁V₁ = P₂V₂
P and V are pressure and temperature values
1 and 2 are initial and final states.
PV product = 3 x 4 = 12